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with huge reservoirs.

The changes in this Second Edition have been made as a result of more than 10
years of classroom testing and feedback from students. To help students review
the important concepts and test their newly gained knowledge, each topic ends
with a boxed summary of ideas and results. Every chapter has numerous
homework problems, covering a broad range of difficulties. Answers are given
to odd-numbered problems, and solutions to even-numbered problems are
available to instructors at www.cambridge.org/9780521865579.
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Preface

Goals

The subject of thermodynamics was being developed on a postulatory basis long
before we understood the nature or behavior of the elementary constituents of
matter. As we became more familiar with these constituents, we were still slow to
place our trust in the “new” field of quantum mechanics, which was telling us that
their behaviors could be described correctly and accurately using probabilities
and statistics.

The influence of this historical sequence has lingered in our traditional ther-
modynamics curriculum. Until recently, we continued to teach an introductory
course using the more formal and abstract postulatory approach. Now, however,
there is a growing feeling that the statistical approach is more effective. It demon-
strates the firm physical and statistical basis of thermodynamics by showing how
the properties of macroscopic systems are direct consequences of the behaviors
of their elementary constituents. An added advantage of this approach is that it is
easily extended to include some statistical mechanics in an introductory course.
It gives the student a broader spectrum of skills as well as a better understanding
of the physical bases.

This book is intended for use in the standard junior or senior undergraduate
course in thermodynamics, and it assumes no previous knowledge of the subject.
I try to introduce the subject as simply and succinctly as possible, with enough
applications to indicate the relevance of the results but not so many as might risk
losing the student in details. There are many advanced books of high quality that
can help the interested student probe more deeply into the subject and its more
specialized applications.

I try to tie everything straight to fundamental concepts, and I avoid “slick
tricks” and the “pyramiding” of results. I remain focused on the basic ideas and
physical causes, because I believe this will help students better understand, retain,
and apply the tools and results that we develop.

Active learning

I think that real learning must be an active process. It is important for the student
to apply new knowledge to specific problems as soon as possible. This should be a
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viii Preface

daily activity, and problems should be attempted while the knowledge is still fresh.
A routine of frequent, timely, and short problem-solving sessions is far superior
to a few infrequent problem-solving marathons. For this reason, at the end of each
chapter the text includes a very large number of suggested homework problems,
which are organized by section. Solutions to the odd-numbered problems are at
the end of the book for instant feedback.

Active learning can also be encouraged by streamlining the more passive
components. The sooner the student understands the text material, the sooner he
or she can apply it. For this reason, I have put the topics in what I believe to be the
most learning-efficient order, and I explain the concepts as simply and clearly as
possible. Summaries are frequent and are included within the chapters wherever
I think would be helpful to a first-time student wrestling with the concepts. They
are also shaded for easy identification. Hopefully, this streamlining of the passive
aspects might allow more time for active problem solving.

Changes in the second edition

The entire book has been rewritten. My primary objective for the second edition
has been to explore more topics, more thoroughly, more clearly, and with fewer
words. To accomplish this I have written more concisely, combined related topics,
and reduced repetition. The result is a modest reduction in text, in spite of the
broadened coverage of topics.

In addition I wanted to correct what I considered to be the two biggest problems
with the first edition: the large number of uncorrected typos and an incomplete
description of the chemical potential. A further objective was to increase the
number and quality of homework problems that are available for the instructor
or student to select from. These range in difficulty from warm-ups to challenges.
In this edition the number of homework problems has nearly doubled, averaging
around 40 per chapter. In addition, solutions (and occasional hints) to the odd-
numbered problems are given at the back of the book. My experience with students
at this level has been that solutions give quick and efficient feedback, encouraging
those who are doing things correctly and helping to guide those who stumble.

The following list expands upon the more important new initiatives and fea-
tures in this edition in order of their appearance, with the chapters and sections
indicated in parentheses.

� Fluctuations in observables, such as energy, temperature, volume, number of particles,

etc. (Sections 3A, 3C, 7C, 9B, 19A)
� Improved discussion and illustrations of the chemical potential (Sections 5C, 8A, 9E,

14A)
� The explicit dependence of the number of accessible states on the system’s internal

energy, volume, and number of particles (Chapter 6)
� Behaviors near absolute zero (Sections 9H, 24A, 24B)
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� Entropy and the third law (Section 8D)
� A new chapter on interdependence among thermodynamic variables (Chapter 11)
� Thermal conduction, and the heat equation (Section 12E)
� A more extensive treatment of engines, including performance analysis (Section 13F),

model cycles, a description of several of the more common internal combustion engines

(Section 13H), and vapor cycles (Section 13I)
� A new chapter on diffusive interactions, including such topics as diffusive equilibrium,

osmosis, chemical equilibrium, and phase transitions (Chapter 14)
� Properties of solutions (colligative properties, vapor pressure, osmosis, etc.)

(Section 14B)
� Chemical equilibrium and reaction rates (Section 14C)
� A more thorough treatment of phase transitions (Section 14D)
� Binary mixtures, solubility gap, phase transitions in minerals and alloys, etc.

(Section 14E)
� Conserved properties (Section 16E)
� Calculating the chemical potential for quantum systems (Section 19E)
� Chemical potential and internal energy for quantum gases (Section 20D)
� Entropy and adiabatic processes in photon gases (Section 21E)
� Thermal noise (Section 21F)
� Electrical properties of materials, including band structure, conductors, intrinsic and

doped semiconductors, and p--n junctions (Chapter 23)
� Update of recent advances in cooling methods (Section 24A)
� Update of recent advances in Bose--Einstein condensation (Section 24B)
� Stellar collapse (Section 24C)

Organization

The book has been organized to give the instructor as much flexibility as possible.
Some early chapters are essential for the understanding of later topics. Many
chapters, however, could be skipped at a first reading or their order rearranged as
the instructor sees fit. To help the instructor or student with these choices, I give
the following summary followed by more detailed information.

Summary of organization

Part I Introduction
Chapter 1 essential if the students have not yet had a course in quantum mechan-
ics. Summarizes important quantum effects

Part II Small systems
Chapter 2 and Chapter 3 insightful, but not needed for succeeding chapters
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Part III Energy and the first law
Chapter 4, Chapter 5 and Chapter 6 essential

Part IV States and the second law
Chapter 6, Chapter 7 and Chapter 8 essential

Part V Constraints
Chapter 9 essential
Chapter 10, Chapter 11, Chapter 12, Chapter 13 and Chapter 14 any order, and
any can be skipped

Part VI Classical statistics
Chapter 15 essential
Chapter 16, Chapter 17 and Chapter 18 any order, and any can be skipped

Part VII Quantum statistics
Chapter 19, Chapter 20 A, B essential
Chapter 21, Chapter 22, Chapter 23 and Chapter 24 any order, and any can be
skipped

More details

Part I -- Introduction Chapter 1 is included for the benefit of those students
who have not yet had a course in quantum mechanics. It summarizes important
quantum effects that are used in examples throughout the book.

Part II -- Small systems Chapters 2 and 3 study systems with only a few ele-
ments. By studying small systems first the student develops both a better appre-
ciation and also a better understanding of the powerful tools that we will need for
large systems in subsequent chapters. However, these two chapters are not essen-
tial for understanding the rest of the book and may be skipped if the instructor
wishes.

Part III -- Energy and the first law Chapters 4 and 5 are intended to give the
student an intuitive physical picture of what goes on within interacting systems on
a microscopic scale. Although the mathematical rigor comes later, this physical
understanding is essential to the rest of the book so these two chapters should not
be skipped.

Part IV -- States and the second law Chapters 6, 7, and 8 are the most impor-
tant in the book. They develop the statistical basis for much of thermodynamics.

Part V -- Constraints Chapter 9 derives the universal consequences of the fun-
damental ideas of the preceding three chapters. So this chapter shows why things
must behave as they do, and why our “common sense” is what it is. Chapters 10--14
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all describe the application of constraints to more specific systems. None of these
topics is essential, although some models in Chapter 10 would be helpful in under-
standing examples used later in the book; if Chapters 11 and 12 are covered, they
should be done in numerical order. Topics in these five chapters include equations
of state and models, the choice and manipulation of variables, isobaric, isother-
mal, and adiabatic processes, reversibility, important nonequilibrium processes,
engines, diffusion, solutions, chemical equilibrium, phase transitions, and binary
mixtures.

Part VI -- Classical statistics Chapter 15 develops the basis for both classi-
cal “Boltzmann” and quantum statistics. So even if you go straight to quantum
statistics, this chapter should be covered first. Chapters 16, 17, and 18 are appli-
cations of classical statistics, each of which has no impact on any other material
in the book. So they may be skipped or presented in any order with no effect on
subsequent material.

Part VII -- Quantum statistics Chapter 19 introduces quantum statistics, and
the first two sections of Chapter 20 introduce quantum gases. These provide the
underpinnings for the subsequent chapters and therefore must be covered first.
The remaining four (Chapters 21--24 ) are each independent and may be skipped
or presented in any order, as the instructor chooses.
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List of constants, conversions, and prefixes

Constants

acceleration of gravity g = 9.807 m/s2

Avogadro’s number NA = 6.022 × 1023 particles/mole

Boltzmann’s constant k = 1.381 × 10−23 J/K = 8.617 × 10−5 eV/K

Coulomb constant 1/4πε0 = 8.988 × 109 kg m3/(s2 C2)

elementary unit of charge e = 1.602 × 10−19 C

gas constant R = NAk = 8.315 J/(K mole)

= 0.08206 liter atm/(K mole)

gravitational constant G = 6.673 × 10−11 m3/(kg s2)

magnetons

Bohr magneton µB = 9.274 × 10−24 J/T = 5.788 × 10−5 eV/T

nuclear magneton µN = 5.051 × 10−27 J/T = 3.152 × 10−8 eV/T

masses

atomic mass unit u = 1.661 × 10−27 kg

electron mass me = 9.109 × 10−31 kg

neutron mass mn = 1.675 × 10−27 kg

proton mass mp = 1.673 × 10−27 kg

Planck’s constant h = 6.626 × 10−34 J s = 4.136 × 10−15 eV s

h = h/2π = 1.055 × 10−34 J s = 6.582 × 10−16 eV s

speed of light in vacuum c = 2.998 × 108 m/s

Stefan--Boltzmann constant σ = 5.671 × 10−8 W/(m2 K4)

Conversions

1 A
◦ = 10−10 m

1 liter = 10−3 m3

1 atm = 1.013 × 105 Pa
log10x = 0.4343 ln x
ex = 100.4343x

1 eV = 1.602 × 10−19 J
1 cal = 4.184 J = 0.04129 liter atm
1 T = 1 Wb/m2 = 104 G
temperature (K) = temperature (◦C) + 273.15 K

xii
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giga G 109

mega M 106

kilo k 103

centi c 10−2

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15
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Imagine you could shrink into the atomic world. On this small scale, motion is
violent and chaotic. Atoms shake and dance wildly, and each carries an electron
cloud that is a blur of motion. By contrast, the behavior of a very large number
of atoms, such as a baseball or planet, is quite sedate. Their positions, motions,
and properties change continuously yet predictably. How can the behavior of
macroscopic systems be so predictable if their microscopic constituents are so
unruly? Shouldn’t there be some connection between the two?

Indeed, the behaviors of the individual microscopic elements are reflected in
the properties of the system as a whole. In this course, we will learn how to make
the translation, either way, between microscopic behaviors and macroscopic
properties.

A The translation between microscopic and
macroscopic behavior

A.1 The statistical tools

If you guess whether a flipped coin will land heads or tails, you have a 50% chance
of being wrong. But for a very large number of flipped coins, you may safely
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4 Introduction to thermodynamics and statistical mechanics

(a) (b)

Figure 1.1 (a) If you know the probabilities for one single coin flip then you can
predict the heads--tails distribution for a large number of them. Conversely, by
observing the heads--tails distribution for a large number of flipped coins, you can
infer the probabilities for any one of them. (b) What is the probability that a rolled
dice will land with six dots up? If a large number of dice were rolled, roughly what
fraction of them would land with six dots up?

assume that nearly half will land heads. Even though the individual elements are
unruly, the behavior of a large system is predictable (Figure 1.1).

Your prediction could go the other way, too. From the behavior of the entire
system, you might predict probabilities for the individual elements. For example,
if you find that one sixth of a large number of rolled dice show sixes (i.e., six
dots up), you can correctly infer that the probability for any one die to show
a six is 1/6 (Figure 1.1b). When a system is composed of a large number of
identical elements, you can use the observed behavior of an individual element
to predict the properties of the whole system, or conversely, you can use the
observed properties of the entire system to deduce the probable behaviors of the
individual elements.

The study of this two-way translation between the behavior of the individ-
ual elements and the properties of the system as a whole is called statistical
mechanics. One of the goals of this book is to give you the tools for making this
translation, in either direction, for whatever system you wish.

A.2 Thermodynamics

The industrial revolution and the attendant proliferation in the use of engines gave
a huge impetus to the study of thermodynamics, a name that obviously reflects
the early interest in turning heat into motion. The study now encompasses all
forms of work and energy and includes probing the relationships among system
parameters, such as how pressure influences temperature, how energy is converted
from one form to another, etc.
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Considerable early progress was made with little or no knowledge of the
atomic nature of matter. Now that we understand matter’s elementary constituents
better, the tools of thermodynamics and statistical mechanics help us improve
our understanding of matter and macroscopic systems at a more fundamental
level.

Summary of Section A

If a system is composed of many identical elements, the probable behaviors of an

individual element may be used to predict the properties of the system as a whole or,

conversely, the properties of the system as a whole may be used to infer the probable

behaviors of an individual element. The study of the statistical techniques used to

make this two-way translation between the microscopic and macroscopic behaviors

of physical systems is called statistical mechanics. The study of interrelationships

among macroscopic properties is called thermodynamics. Using statistical tools, we

can relate the properties of a macroscopic system to the behaviors of its individual

elements, and in this way obtain a better understanding of both.

B Quantum effects

When a large number of coins are flipped, it is easy to predict that nearly half will
land heads up. With a little mathematical sophistication, you might even be able
to calculate typical fluctuations or probabilities for various possible outcomes.
You could do the same for a system of many rolled dice.

Like coins and dice, the microscopic constituents of physical systems also have
only certain discrete states available to them, and we can analyze their behaviors
with the same tools that we use for systems of coins or dice. We now describe a
few of these important “quantized” properties, because we will be using them as
examples in this course. You may wish to refer back to them when you arrive at
the appropriate point later in the book.

B.1 Electrical charge

For reasons we do not yet understand, nature has provided electrical charge in
fundamental units of 1.6 × 10−19 coulombs, a unit that we identify by e:

e = 1.602 × 10−19 C.

We sometimes use collisions to study the small-scale structure of subatomic
particles. No matter how powerful the collision or how many tiny fragments are
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6 Introduction to thermodynamics and statistical mechanics

produced, the charge of each is always found to be an integral number of units of
the fundamental charge, e.1

B.2 Wave nature of particles

In the nineteenth century it was thought that energy could go from one point to
another by either of two distinct processes: the transport of matter or the propaga-
tion of waves. Until the 1860s, we thought waves could only propagate through
matter. Then the work of James Clerk Maxwell (1831--79) demonstrated that
electromagnetic radiation was also a type of wave, with oscillations in electric
and magnetic fields rather than in matter. These waves traveled at extremely high
speeds and through empty space. Experiments with appropriate diffraction grat-
ings showed that electromagnetic radiation displays the same diffractive behavior
as waves that travel in material media, such as sound or ocean waves.

Then in the early twentieth century, experiments began to blur the distinction
between the two forms of energy transport. The photoelectric effect and Compton
scattering demonstrated that electromagnetic “waves” could behave like “parti-
cles.” And other experiments showed that “particles” could behave like “waves:”
when directed onto appropriate diffraction gratings, beams of electrons or other
subatomic particles yielded diffraction patterns, just as waves do.

The wavelength λ for these particle--waves was found to be inversely propor-
tional to the particle’s momentum p; it is governed by the same equation used for
electromagnetic waves in the photoelectric effect and Compton scattering,

λ = h

p
(h = 6.626 × 10−34 J s). (1.1)

Equivalently, we can write a particle’s momentum in terms of its wave number,
k = 2π/λ.

p = h

λ
= h

2π

2π

λ
= hk ( h = h/2π = 1.055 × 10−34 J s). (1.2)

The constant of proportionality, h, is Planck’s constant, and when divided by 2π

it is called “h-bar.”
We do not know why particles behave as waves any more than we know

why electrical charge comes in fundamental units e. But they do, and we can
set up differential “wave equations” to describe any system of particles we like.
The solutions to these equations are called “wave functions,” and they give us
the probabilities for various behaviors of the system. In the next few pages we
describe some of the important consequences.

1 For quarks the fundamental unit would be e/3. But they bind together to form the observed ele-

mentary particles (protons, neutrons, mesons, etc.) only in ways such that the total electrical charge

is in units of e.
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Figure 1.2 The
superposition of the sine
waves below yields the
sawtooth wave above.

B.3 Uncertainty principle

Any function of the variable x on (−∞, ∞) can be written as a superposition
of sine wave components of various wavelengths (Figure 1.2). These sine wave
components may be either of the form sin kx and cos kx, or eikx , and the technique
used to determine the contributions of each component to any function, f (x), is
called Fourier analysis. In mathematical terms, any function f (x) on (−∞, +∞)
can be written as

f (x) =
∫ ∞

0

[a(k) sin kx + b(k) cos kx] dk

or

f (x) =
∫ ∞

−∞
c(k)eikx dk,

where the coefficients a(k), b(k), c(k) are the “amplitudes” of the respective
components.

We now investigate the behavior of a particle’s wave function in the x dimen-
sion. Although a particle exists in a certain region of space, the sine wave compo-
nents, e.g., sin kx, extend forever. Consequently, if we are to construct a localized
function from the superposition of infinitely long sine waves, the superposition
must be such that the various components cancel each other out everywhere
except for the appropriate small region (Figure 1.3).

To accomplish this cancellation requires an infinite number of sine wave com-
ponents, but the bulk of the contributions come from those whose wave numbers
k lie within some small region �k. As we do the Fourier analysis of various
functions, we find that the more localized the function is in x, the broader is the
characteristic spread in the wave numbers k of the sine wave components.
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8 Introduction to thermodynamics and statistical mechanics

∆xcancellation cancellation

1 2 3 4 5

Figure 1.3 (Top) Superposition of two sine waves of nearly the same wavelengths
(the broken and the dotted curves), resulting in beats (the solid curve). The closer
the two wavelengths, the longer the beats. There is an inverse relationship. (Bottom)
In a particle’s wave function, the sine wave components must cancel each other out
everywhere except for the appropriate localized region of space, �x. To make a
waveform that does not repeat requires the superposition of an infinite number of
sine waves, but the same relationship applies: the spread in wavelengths is
inversely related to the length of the beat. (The cancellation of the waves farther out
requires the inclusion of waves with a smaller spread in wavelengths. So the wave
numbers of these additional components are closer together and therefore lie within
the range �k of the ‘‘primary”wave number.)

In fact, the two are inversely related. If �x represents the characteristic width of
the particle’s wave function and �k the characteristic spread in the components’
wave numbers, then

�x�k = 2π.

If we multiply both sides by h and use the relationship 1.2 between wave number
and momentum for a particle, this becomes the uncertainty principle,

�x�px = h. (1.3)

This surprising result2 tells us that because particles behave like waves, they
cannot be pinpointed. We cannot know exactly either where they are or where

2 The uncertainty principle is written in many closely related forms. Many authors replace the equals

sign by ≥, to indicate that the actual measurement may be less precise than the mathematics allows.

Furthermore, the spread is a matter of probabilities, so its size reflects your confidence level (i.e.,

50%, 75%, etc.). We use the conservative value h because it coincides with Nature’s choice for the

size of a quantum state, as originally discovered in the study of blackbody radiation.
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px px

∆px
∆px

∆x
∆x

h h

x x

(a) (b)

Figure 1.4 (a) According to classical physics, a particle could be located as a point
in (x,px) space. That is, both its position and momentum could be specified exactly.
In modern physics, however, the best we can do is to identify a particle as being
somewhere within a box of area �x�px = h. (b) Because of the wave nature of
particles, if we try to specify better the location of a particle in x-space, we lose
accuracy in the determination of its momentum px. The area �x�px of the minimal
quantum box does not change.

they are going. If we try to locate a particle’s coordinates in the two-dimensional
space (x, px ), we will not be able to specify either coordinate exactly. Instead, the
best we can do is to say that its coordinates are somewhere within a rectangle of
area �x�px = h (Figure 1.4a). If we try to specify its position in x better then our
uncertainty in px will increase, and vice versa; the area of the rectangle �x�px

remains the same (Figure 1.4b).

B.4 Quantum states and phase space

The position (x, y, z) and momentum (px , py, pz) specify the coordinates of a
particle in a six-dimensional “phase space.” Although the uncertainty relation
1.3 applies to the two-dimensional phase space (x, px ), identical relationships
apply in the y and z dimensions. And by converting to angular measure, we get
the same uncertainty principle for angular position and angular momentum. Thus
we obtain

�y�py = h, �z�pz = h, �θ�L = h. (1.3′, 1.3′′, 1.3′′′)

We can multiply the three relationships 1.3, 1.3′, 1.3′′ together to get

�x�y�z�px�py�pz = h3,

which indicates that we cannot identify a particle’s position and momentum coor-
dinates in this six-dimensional phase space precisely. Rather, the best we can do
is to say that they lie somewhere within a six-dimensional quantum “box” or
“state” of volume �x�y�z�px�py�pz = h3.
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h = area of one state

number of states =
[x] [px]

h

h

px

x

[px]

[x]

Figure 1.5 The total
number of quantum
states accessible to a
particle whose
momentum is confined to
the range [px] and whose
position is confined to the
range [x] is equal to the
total accessible area in
phase space divided by
the area of a single
quantum state, [x][px]/h.

Consider a particle moving in the x dimension whose position and momentum
coordinates lie within the ranges [x] and [px ], respectively (Figure 1.5). The
number of different quantum states that are available to this particle is equal to
the total accessible area in two-dimensional phase space, [x][px ], divided by the
area of a single quantum state, �x�px = h. That is,

number of accessible states = total area

area of one state
= [x][px]

h
.

Extending this to motion in three dimensions we have

number of accessible states = Vr Vp

h3
, (1.4)

where Vr and Vp are the accessible volumes in coordinate and momentum space,
respectively. In particular, the number of quantum states available in the six-
dimensional volume element d3rd3 p is given by

number of accessible states = d3rd3 p

h3
= dxdydzdpx dpydpz

h3
. (1.5)

One important consequence of the relations 1.4 and 1.5 is that the number of
quantum states included in any interval of any coordinate is directly proportional
to the length of that interval. If ξ represents any of the phase-space coordinates
(i.e., the position and momentum coordinates) then

number of quantum states in the interval dξ ∝ dξ. (1.6)

B.5 Density of states

Many calculations require a summation over all states accessible to a particle.
Since quantum states normally occupy only a very small region of phase space
and are very close together, it is often convenient to replace discrete summation
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by continuous integration, using the result 1.5:

∑
states

→
∫

d3rd3p

h3
. (1.7)

Sometimes the most difficult part of doing this integral is trying to determine
the limits of integration. Interactions among particles may restrict the region of
phase space accessible to them.

In ideal gases, particles have access to the entire container volume. Changing
the sum over states to an integral over the volume and all momentum directions
(i.e., the angles in d3 p = p2dp sin θ dθ dφ) gives

∑
states

→
∫

d3rd3p

h3
= 4πV

h3

∫
p2dp.

We can also write this as a distribution of states in the particle energy, ε. Energy
and momentum are related by ε = p2/2m for massive nonrelativistic particles and
by ε = pc (c is the speed of travel) for massless particles such as electromagnetic
waves (photons) or vibrations in solids (phonons). For these “gases” the sum over
states becomes (homework)

∑
states

→
∫

d3rd3 p

h3
=




2πV(2m)3/2

h3

∫ √
ε dε (nonrelativistic),

4πV

h3c3

∫
ε2dε (massless or relativistic)

It is customary to write the summation over phase space as an integral over a
function g(ε):

∑
states

→
∫

d3rd3 p

h3
=

∫
g(ε) dε, (1.8)

where g(ε) is the number of accessible states per unit energy and is therefore
called the “density of states.” From the above case of an ideal gas, we see that
the density of states for a system of noninteracting particles is given by

g(ε) = 2πV (2m)3/2

h3

√
ε (nonrelativistic gas)

(1.9)
g(ε) = 4πV

h3c3
ε2 (massless or relativistic gas)

For other systems, however, g(ε) may be quite different (Figure 1.6). The density
of states contains within it the constraints placed on the particles by their mutual
interactions.

B.6 Angular momentum

Another surprising result of quantum mechanics is that the angular momentum
of a particle or a system of particles can only have certain values; furthermore, a
fundamental constraint (the uncertainty principle) prohibits us from knowing its
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Figure 1.6 The solid line
shows the actual density
of states for the atomic
vibrations in a mole of
sodium metal. The broken
line shows the density of
states for the motion of
the sodium atoms viewed
as an ideal gas of
massless phonons
occupying the same
volume (equation 1.9).

exact orientation in space. In fact, we can know only one of its three components
at a time. It is customary to call the direction of the known component the
z direction.

The angular momentum of the particles of a system comes from either or both
of two sources. They may be traveling in an orbit and may have intrinsic spin as
well. The total angular momentum J of a particle is the vector sum of that due to
its orbit, L, and that due to its intrinsic spin, S:

J = L + S.

The orbital angular momentum of a particle must have magnitude

|L| =
√

l(l + 1) h, l = 0, 1, 2, . . . , (1.10)

where the integer l is called the “angular momentum quantum number.” Its ori-
entation is also restricted; the component along any chosen axis (usually called
the z-axis) must be an integral multiple of h (Figure 1.7):

Lz = lz h, lz = 0, ±1, ±2, . . . ,±l. (1.11)

For example, if the particle is in an orbit with l = 1 then the total angular
momentum has magnitude

√
2 h, and its z-component can have any of the

values (−1, 0, 1) h.
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Figure 1.7 Illustration of
the quantization of one
component (here the
z-component) of angular
momentum, which can
take the values
(0, ±1, ±2, . . .)h. The first
illustration is for an l =2
orbit. Also shown are the
possible spin angular
momentum orientations
for a spin-1 boson, and
for a spin-1/2 fermion.

Similar constraints apply to the intrinsic spin angular momentum S of a par-
ticle, for which the magnitude and z-component are given by

|S| =√
s(s + 1) h, (1.12)

Sz = sz h, sz = −s, −s + 1, . . . ,+s, (1.13)

but with one major difference. The spin quantum number s may be either integer
or half integer. Those particles with integer spins are called “bosons,” and those
with half-integer spins are called “fermions.”

For later reference, we summarize the constraints on the z-component of angu-
lar momentum as follows:

Lz = (0, ±1, ±2, . . . , ±l) h (1.14)

and

Sz = (0, ±1, ±2, . . . , ±s) h (bosons),

Sz = (±1/2, ±3/2, . . . , ±s) h (fermions).

We label particles by the value of their spin quantum number, s. For example, a
spin-1 particle has s = 1. Its z-component can have the values sz = (−1, 0, 1) h.
A spin-1/2 particle can have z-component (−1/2, +1/2) h. We often say simply
that it is “spin down” or “spin up,” respectively. Protons, neutrons, and electrons
are all spin-1/2 particles.

The quantum mechanical origin of these strange restrictions lies in the require-
ment that if either the particle or the laboratory is turned through a complete
rotation around any axis, the observed situation will be the same as before the
rotation. Because observables are related to the square of the wave function, the
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Figure 1.8 A magnetic field B is produced by circulating electrical charges. (Left) An
orbiting electrical charge is a current loop. The magnetic moment of such a loop is
equal to the product of the electrical current times the area of the loop. (Right) A
charged particle spinning on its axis is also a current loop, and therefore it also
produces a magnetic field. (The figures show positive charges.)

wave function must turn into either plus or minus itself under a rotation by 2π

radians. Its sign remains unchanged if the angular momentum around the rotation
axis is an integer multiple of h (i.e., for bosons) but changes if the angular momen-
tum around the rotation axis is a half-integer multiple of h (i.e., for fermions).
Because of this difference in sign under 2π rotations, bosons and fermions each
obey a different type of quantum statistics, as we will see in a later chapter.

B.7 Magnetic moments

Moving charges create magnetic fields (Figure 1.8). For a particle in orbit, such
as an electron orbiting the atomic nucleus, the magnetic moment µµ is directly
proportional to its angular momentum L (see Appendix A):

µµ =
( q

2m

)
L,

where q is the charge of the particle and m is its mass. Since angular momenta
are quantized, so are the magnetic moments:

µz =
( q

2m

)
Lz, where Lz = (0, ±1, ±2, . . . , ± l) h. (1.15)

For particle spin, the relationship between the magnetic moment and the spin
angular momentum S is similar:

µµ= g
( e

2m

)
S and µz = g

( e

2m

)
Sz, (1.16)

where e is the fundamental unit of charge and g is called the “gyromagnetic ratio.”
By comparing formulas 1.15 and 1.16, you might think that the factor g is

simply the charge of the particle in units of e. But the derivation of equation 1.15
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(Appendix A) assumes that the mass and charge have the same distribution, which
is not true for the intrinsic angular momentum (i.e., spin) of quark-composite
particles such as nucleons. Furthermore, in the area of particle spins our classical
expectations are wrong anyhow. Measurements reveal that for particle spins:

g = −2.00 (electron),

g = +5.58 (proton),

g = −3.82 (neutron).

As equations 1.15 and 1.16 indicate, the magnetic moment of a particle is
inversely proportional to its mass. Nucleons are nearly 2000 times more massive
than electrons, so their contribution to atomic magnetism is normally nearly 2000
times smaller.

The interaction energy of a magnetic moment, µµ with an external magnetic
field B is U = −µµ · B. If we define the z direction to be that of the external
magnetic field, then

U = −µz B. (1.17)

In general there are two contributions to the magnetic moment of a particle, one
from its orbit and one from its spin. Both are quantized, so the interaction energy
U can have only certain discrete values.

B.8 Bound states

Whenever a particle is confined, it may have only certain discrete energies. With
the particle bouncing back and forth across the confinement, the superposition of
waves going in both directions results in standing waves. Like waves on a string
(Figure 1.9), standing waves of only certain wavelengths fit -- hence only certain
momenta, (1.2), and therefore certain energies, are allowed.

The particular spectrum of allowed energies depends on the type of con-
finement. Those allowed by a Coulomb potential are different from those of a
harmonic oscillator or those of a particle held inside a box with rigid walls, for
example. Narrower confinements require shorter wavelengths, which correspond
to larger momenta, higher kinetic energies, and greater energy spacing between
neighboring states.

The harmonic oscillator confinement is prominent in both the macroscopic and
microscopic worlds. If you try to displace any system away from equilibrium,
there will be a restoring force that tries to bring it back. (If not, it wouldn’t have
been in equilibrium in the first place!) For sufficiently small displacements, the
restoring force is proportional to the displacement and in the opposite direction.
That is,

F = −κx,
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Figure 1.9 Particles behave as waves. A particle in a rigid confinement cannot
leave, but must move back and forth across it. This generates standing waves,
which must vanish at the boundaries because the particle cannot go beyond. Only
certain wavelengths fit. Here are shown the four longest allowed wavelengths,
corresponding to the four lowest momenta (p = h/λ), and hence the four lowest
kinetic energies (p2/2m).

where x is the displacement and κ is the constant of proportionality, sometimes
called the “elastic” or “spring” constant. The corresponding potential energy is

U (x) = U0 + 1
2 κx2

where U0 is a constant.
When we solve the wave equation for the spectrum of energies (relative to U0)

allowed by this harmonic oscillator potential, we find that they are given by

E = (
n + 1

2

)
hω, n = 0, 1, 2, . . . (1.18)

for a one-dimensional harmonic oscillator, and

E = (
n + 3

2

)
hω, n = 0, 1, 2, . . . (1.19)

for a three-dimensional harmonic oscillator, where the angular frequency is given
by

ω =
√

κ

m
.

Notice that the lowest possible energy (with n = 0) is not zero. In fact, no
particle may ever have exactly zero kinetic energy, because then its momen-
tum would be zero and its momentum would be fixed. That would violate the
uncertainty principle, which dictates that we can never know the momentum and
the position exactly. Consequently, even at absolute zero temperature, a particle
must still be moving. This motion is sometimes called the “zero-point energy” or
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“Zitterbewegung.” We know neither in which direction it is going nor where it is
in the confinement, so it still obeys the uncertainty principle.

C Description of a state

We began this chapter with examples involving coins and dice. Each of these could
have only a limited number of configurations or states: a coin has two and a die has
six. Then we learned that important characteristics of the microscopic components
of real physical systems also have discrete values, such as the electrical charge,
the angular momentum, the magnetic moment and magnetic interaction energy,
or the energy in a confinement.

In any particular problem there will be only one or two properties of the element
of the system that would be relevant, so we can ignore all others. When dealing
with flipped coins, for example, we wish to know their heads--tails configurations
only. Their colors, compositions, designs, interactions with the table, etc. are
irrelevant. Likewise, in studying the magnetic properties of a material we may
wish to know the magnetic moment of the outer electrons only, and nothing else.
Or, when studying a material’s thermal properties, we may wish to know the
vibrational states of the atoms and nothing else. Consequently, when we describe
the “state” of a system, we will only give the properties that are relevant for the
problem we are considering.

The state of a system is determined by the state of each element. For example,
a system of three coins is identified by the heads--tails configuration of each. And
the spin state of three distinguishable particles is identified by stating the spin
orientation of each. When the system becomes large (1024 electrons, for example)
the description of the system becomes hopelessly long. Fortunately, we can use
statistical methods to describe these large systems; the larger the systems, the
simpler and more useful these descriptions will be. In Chapter 2, we begin with
small systems and then proceed to larger systems, to illustrate the development
and utility of some of these statistical techniques.

Summary of Sections B and C

Many important properties of the microscopic elements of a system are quantized.

One is electrical charge. Others are due to the wave nature of particles and include

their position and momentum coordinates, angular momentum, magnetic moment,

magnetic interaction energies, and the energies of any particles confined to a

restricted region of space.

We normally restrict our description of the state of an element of a system to

those few properties in which we are interested. The state of a system is determined

by specifying the state of each of its elements. This is done statistically for large

systems.
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Problems

The answers to the first three problems are given here. After that, you will find
the answers to the odd-numbered problems at the back of the book.

Section A
1. You flip one million identical coins and find that six of them end up standing

on edge. What is the probability that the next flipped coin will end up on edge?
(Answer: 6 × 10−6)

2. (a) If you deal one card from a well-shuffled deck of 52 playing cards, what
is the probability that the card will be an ace? (Answer: 4/52, since there
are four aces in a deck.)

(b) Suppose that you deal one card from each of one million well-shuffled
decks of 52 playing cards each. How many of the dealt cards would be
aces? (Answer: 7.7 × 104)

3. Flip a coin twice. What percentage of the time did it land heads? Repeat this a
few times, each time recording the percentage of the two flips that were heads.
Now flip the coin 20 times, and record what percentage of the 20 flips were
heads. Repeat. For which case (2 flips, or 20 flips) is the outcome generally
closer to a 50--50 heads--tails distribution? If you flip 20 coins, why would it
be unwise to bet on exactly 10 landing heads?

4. A certain puddle of water has 1025 identical water molecules. As the temper-
ature of this puddle falls to 0 ◦C and below, the puddle freezes, resulting in
a considerable change in the thermodynamic properties of this system. What
do you suppose happens to the individual molecules to cause this remarkable
change?

5. List eight systems that have large numbers of identical elements.

6. In a certain city, there are 2 000 000 people and 600 000 autos. The average
auto is driven 30 miles each day. If the average driver drives about 80 000 miles
per accident, roughly how many auto accidents are there per day in this city?

7. Suppose that you flip a coin three times, and each time it lands tails. Many a
gambler would be willing to bet better than even odds (e.g., 2 to 1, or 3 to 1)
that the next time it will land heads, citing the “law of averages.” Are these
gamblers wise or foolish? Explain.

Section B
8. The density of liquid water is 103 kg/m3. There are 6.022 × 1023 molecules

in 18 grams of water. With this information, estimate the width of a molecule.
Of an atom. Of an atomic nucleus, which is about 5 × 104 times narrower
than an atom.
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9. After combing your hair, you find your comb has a net charge of −1.92 ×
10−18 C. How many extra electrons are on your comb?

10. What is the wavelength associated with an electron moving at a speed of
107 m/s? What is the wavelength associated with a proton moving at this
speed? What is the wavelength of a 70 kg sprinter running at 10 m/s?

11. For waves incident on a diffraction grating, the diffraction formula is given
by 2d sin θ = mλ, where m is an integer, d is the grating spacing, and θ is
the angle for constructive interference, measured from the direction of the
incoming waves. Suppose that we use the arrangements of atoms in a crystal
for our grating.
(a) For first-order diffraction (m = 1) and a crystal lattice spacing of 0.2 nm,

what wavelength would have constructive interference at an angle of 30o

with the incoming direction?
(b) What is the momentum of a particle with this wavelength?
(c) At what speed would an electron be traveling in order to have this

momentum? A proton?
(d) What would be the energy in eV of an electron with this momentum? Of

a proton? (1eV = 1.6 × 10−19 J.)
(e) What would be the energy in eV of an x-ray of this wavelength? (For an

electromagnetic wave E = pc, where c is the speed of light.)

12. Consider the superposition of two waves with wavelengths λ1 = 0.020 nm
and λ2 = 0.021 nm, which produces beats (i.e., alternate regions of construc-
tive and destructive interference).
(a) What is the width of a beat?
(b) What is the difference between the two wave numbers, �k = k2 − k1?
(c) What is the product �k�x, where �x is the width of a beat?
(d) Repeat the above for the two wavelengths λ1 = 5 m, λ2 = 5.2 m.

13. Suppose we know that a certain electron is somewhere in an atom, so that
our uncertainty in the position of this electron is the width of the atom,
�x = 0.1 nm. What is our minimum uncertainty in the x-component of its
momentum? In its x-component of velocity?

14. Consider a particle moving in one dimension. Estimate the number of quan-
tum states available to that particle if:
(a) It is confined to a region 10−4 m long and its momentum must lie between

−10−24 and +10−24 kg m/s;
(b) it is an electron confined a region 10−9 m long with speed less than

107 m/s (i.e., the velocity is between +107 and −107 m/s).

15. Consider a proton moving in three dimensions, whose motion is confined to
be within a nucleus (a sphere of radius 2 × 10−15 m) and whose momentum
must have magnitude less than p0 = 3 × 10−19 kg m/s. Roughly how many
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quantum states are available to this proton? (Hint: The volume of a sphere of
radius p0 is (4/3)πp3

0.)

16. A particle is confined within a rectangular box with dimensions 1 cm by
1 cm by 2 cm. In addition, it is known that the magnitude of its momen-
tum is less than 3g cm/s. How many states are available to it? (Hint: In this
problem, the available volume in momentum space is a sphere of radius
3g cm/s.)

17. In this problem you will estimate the lower limit to the kinetic energy of a
nucleon in a nucleus. A typical nucleus is 8 × 10−15 m across.
(a) What is the longest wavelength of a standing wave that fits inside this

confinement?
(b) What is the energy of a proton of this wavelength in MeV? (1 MeV =

1.6 × 10−13 joules.)

18. (a) Using the technique of the problem above, estimate the typical kinetic
energies of electrons in an atom. The atomic electron cloud is typically
10−10 m across. Express your answer in eV.

(b) Roughly, what is our minimum uncertainty in the velocity of such an
electron in any one direction?

19. Consider a particle in a box. By what factor does the number of accessible
states increase if you:
(a) double the height of the box,
(b) double the width of the box,
(c) double the magnitude of the maximum momentum allowed to the

particle?

20. Starting with the replacement of the sum over states by an integral,
∑

s →∫
d3rd3 p

/
h3 = ∫

g(ε)dε, derive the results 1.9 for the density of states g(ε)
for an ideal gas.

21. (a) Estimate the density of states accessible to an air molecule in a typical
classroom. Assume that the classroom is 6 m by 8 m by 3 m and that the
molecule’s maximum energy is about 0.025 eV (4 × 10−21 joules) and
its mass is 5.7 × 10−26 kg. Express your answer in states per joule and
in states per eV.

(b) If this air molecule were absorbed into a metallic crystal lattice which
confined it so that it could move only approximately 10−11 m in each
direction, what would be the density of states available to it, expressed
in states per eV?

22. The total angular momentum of a particle is the sum of its spin and orbital
angular momenta and is given by Jtotal = [ j( j + 1)]1/2 h, where j is the
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maximum z-component in units of h. With this information, calculate the
angles that a particle’s angular momentum can make with the z-axis for:
(a) a spinless particle in an l = 2 orbit,
(b) a spin-1 boson by itself (in no orbit),
(c) a spin-1/2 fermion by itself.

23. A hydrogen atom is sometimes found in a state where the spins of the proton
and the electron are parallel to each other (e.g., sz = +1/2 for both), yet the
atom’s total angular momentum is zero. How is this possible?

24. Use the relationship 1.16 to estimate the magnetic moment of a spinning elec-
tron, given that an electron is a spin-1/2 particle. If an electron were placed
in an external magnetic field of 1 tesla, what would be the two possible values
of its magnetic interaction energy? (1 tesla = 1 weber/m2 = 1 J s/(C m2))

25. Repeat the above problem for a proton.

26. Estimate the number of quantum states available to an electron if all the
volume and energy of the entire universe were available to it. The radius of
the universe is about 2 × 1010 LY, and one LY is about 1016 m. The total
energy in the universe, including converting all the mass to energy, is about
1070 J. The electron would be highly relativistic, so use E = pc.

27. Consider an electron in an l = 1 orbit, which is in a magnetic field of 0.4 T.
Calculate the magnetic interaction energies for all possible orientations of its
spin and orbital angular momenta (i.e., all lz, sz combinations).

28. The strength of the electrostatic force between two charges q1 and q2 sepa-
rated by a distance r is given by F = kCq1q2/r2, where kC is a constant given
by 8.99 × 109 N m2/C2.
(a) What is the electrostatic force between an electron and a proton separated

by 0.05 nm, as is typical in an atom?
(b) If this same amount of force were due to a spring stretched by 0.05 nm,

what would be the force constant for this spring? (F = −κx, where κ is
the force constant.)

(c) Suppose that an electron were connected to a proton by a spring with
force constant equal to that which you calculated in part (b). What would
be the angular frequency (ω2 = κ/m) for the electron’s oscillations?

(d) What would be the separation between allowed energy levels, in eV?
(e) How does this compare with the 10.2 eV separation between the ground

state and the first excited state in hydrogen?

29. According to our equation for a particle in a harmonic oscillator potential,
the lowest possible energy is not zero. Explain this in terms of wavelengths
of the standing waves in a confinement.
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Section C
30. In how many different ways can a dime and a nickel, land when flipped? A

dime, nickel, and quarter? How about 1024 different coins?

31. A certain fast-food restaurant advertises that its hamburger comes in over
1023 different ways. How many different yes--no choices (e.g., with or without
ketchup, with or without pickles, etc.) would this require?
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As indicated in Chapter 1, we will begin our studies by considering “small sys-
tems” -- those with relatively few elements. Small systems are important in many
fields, such as microelectronics, thin films, surface coatings, and materials at low
temperatures. The elements of small systems may be impurities in semiconduc-
tors, signal carriers, vortices in liquids, vibrational excitations in solids, elements
in computer circuits, etc. We may wish to study some behavioral characteristic
of a small population of plants or people or to analyze the results of a small
number of identical experiments. Besides being important in their own right, the
pedagogical reason for studying small, easily comprehensible systems first is that
we gain better insight into the behaviors of larger systems and better appreciation
for the statistical tools we must develop to study them.

The introduction to larger systems will begin in Chapter 4. Each macroscopic
system contains a very large number of microscopic elements. A glass of water
has more than 1024 identical water molecules, and the room you are in probably
has over 1027 identical nitrogen molecules and one quarter that number of iden-
tical molecules of oxygen. The properties of large systems are very predictable,
even though the behavior of any individual element is not (Figure 2.1). This
predictability allows us to use rather elegant and streamlined statistical tools in
analyzing them.

By contrast, the behaviors of smaller systems are more erratic and unpre-
dictable, requiring the use of more detailed statistical tools. These tools become
cumbersome when the number of elements in the system is large. But fortunately,
this is the point where the simpler and more elegant methods for large systems
become useful.

25
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Figure 2.1 The behavior
of a swarm of gnats is
much more predictable
than the behavior of just
one or two. The larger the
system, the more
predictable its behavior.

A Mean values

We now develop machinery to relate the properties of a system to the behaviors
of the individual elements. To start our development, we imagine we have many
identically prepared systems.1 For example, if our system is a flipped coin then
we have many of them, or if our system is two rolled dice then we have many
pairs of rolled dice. Each system could be in any of several different possible
configurations or “states.” We let Ps indicate the probability that a system is in
the state s.

Suppose that we are interested in some function f, which has the value fs

when the system is in state s. Then the average or mean value f is determined as
follows:

f =
∑

s

fs Ps . (2.1)

Example 2.1 Our system is a single coin and the function f is the number of
heads. That is, f = 1 for heads, and f = 0 for tails. What is the mean value of f
if many coins are flipped?

The probabilities for heads and tails are Ph = 1/2, Pt = 1/2, so the mean
value of f is

f = fh Ph + ft Pt = 1 × 1
2 + 0 × 1

2 = 1
2 .

The average number of heads showing per coin is 1/2.

Example 2.2 Suppose that now each system is a single rolled die and n indicates
the number of dots showing upward. Suppose that f is the square of the number
of dots showing upward ( fn = n2). What is the mean value of f if large numbers
of dice are rolled?

Each of the six faces has probability 1/6 of facing upwards, so

f =
∑

n

n2 Pn = 12 × 1
6 + 22 × 1

6 + 32 × 1
6 + 42 × 1

6

+ 52 × 1
6 + 62 × 1

6 = 91
6 .

The mean value of f = n2 is 91/6, or about 15.2.

1 A large set of identically prepared systems is called an ensemble.
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If f and g are two functions that depend on the state of a system and c is a
constant then

f + g = f + g, (2.2)

c f = c f . (2.3)

These two relations follow directly from the definition of the mean value 2.1
(homework).

B Probabilities for various configurations

B.1 One criterion

We now calculate the probability for a system to be in each of its possible con-
figurations or states. For example, what is the probability that three flipped coins
land with two heads and one tails? Or what is the probability that 12 flipped coins
land with five heads and seven tails?

In this type of problem, we first select the appropriate criterion for the individ-
ual elements. Then we let p represent the probability that the criterion is satisfied
and q the probability that it is not. Examples that we will use in this chapter
include the following.

� Criterion: a flipped coin lands heads up. The probability that this criterion is satisfied

is 1/2, and the probability that it is not satisfied (i.e., the coin lands tails up) is also 1/2.

Therefore

p = 1/2, q = 1/2.

� Criterion: a certain air molecule is in the front third of an otherwise empty room. In

this case,

p = 1/3, q = 2/3.

� Criterion: a rolled dice lands with six dots up. In this case,

p = 1/6, q = 5/6.

A correctly formulated criterion is either satisfied or not satisfied, so we can say
with certainty that it must be one or the other:

probability for one or the other = p + q = 1.

Now suppose that a system has two identical elements, which we label 1 and 2.
The possible configurations and probabilities for the two elements are given by
writing

(p1 + q1)(p2 + q2) = 1 × 1 = 1 = p1 p2 + p1q2 + q1 p2 + q1q2.

Here p1 p2 is the probability that both elements satisfy the criterion, p1q2 is the
probability that element 1 does and 2 does not, and so on. There are a total of
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four possible configurations, as indicated by the four terms on the right in the
equation above, and each term is the probability for that particular configuration.
The fact that the four terms add up to unity reflects the certainty that the system
must be in one of the four configurations.

Example 2.3 We are interested in whether two rolled dice (labeled 1 and 2)
both land with six dots up. What are the probabilities for the various possible
configurations of the two dice?

The probability that either die lands with six dots up is 1/6, and the probability
that it does not is 5/6:

p1 = p2 = 1/6, q1 = q2 = 5/6.

The probabilities for all possible configurations are again given by writing

(p1 + q1)(p2 + q2) = p1 p2 + p1q2 + q1 p2 + q1q2 = 1.

Accordingly, the probabilities for the four possible configurations of the two dice
are:

� both show sixes, p1 p2 = (
1
6

) (
1
6

) = (
1
36

)
;

� die 1 shows six, but die 2 does not, p1q2 = (
1
6

) (
5
6

) = (
5

36

)
;

� die 1 doesn’t show six, but die 2 does, q1 p2 = (
5
6

) (
1
6

) = (
5
36

)
;

� neither shows six, q1q2 = (
5
6

) (
5
6

) = (
25
36

)
.

If two elements have identical probabilities, such as two coins, two dice, or
two air molecules in the room, we can write

p1 = p2 = p and q1 = q2 = q.

The probabilities for the various possible configurations are then given by

(p1 + q1)(p2 + q2) = (p + q)2 = p2 + 2pq + q2 = 1.

The probabilities are p2 that both elements satisfy the criterion, q2 that neither
does, and 2pq that one does and the other does not. The coefficient 2 in this last
expression indicates that there are two ways in which this can happen:

� p1q2, die 1 satisfies the criterion and die 2 doesn’t, or
� q1 p2, die 2 satisfies the criterion and die 1 doesn’t.

If we extend our analysis to systems of three elements, we find that the prob-
abilities are given by writing

(p1 + q1)(p2 + q2)(p3 + q3) = (p + q)3 = p3 + 3p2q + 3pq2 + q3 = 1.

Accordingly, the probabilities of the various possible configurations are as
follows:
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� p3, all three satisfy the criterion;
� 3p2q, two satisfy the criterion and one doesn’t;
� 3pq2, one satisfies the criterion and two don’t;
� q3, none of the three satisfies the criterion.

Looking at the 3p2q term, for example, the coefficient 3 indicates that there are
three different configurations for which two elements satisfy the criterion and
one doesn’t. The following table lists these possibilities.

Elements that do Element that
satisfy the criterion does not

1, 2 3
1, 3 2
2, 3 1

Example 2.4 You flip three coins, labeled 1, 2, and 3. What are the three different
ways in which they could land with two heads and one tail, and what is the
probability of this happening?

The three different possibilities would be hht, hth, and thh. The probability
for two heads and one tail would be

3p2q = 3

(
1

2

)2 (1

2

)
= 3

8
.

We can continue to expand the above development to systems of four elements,
or five, or any number N. For a system of N elements, the probabilities for all the
possible configurations are given by the binomial expansion:

(p + q)N =
N∑

n=0

N !

n!(N − n)!
pnqN−n = 1N = 1.

The nth term in this expansion represents the probability PN (n) that n elements
satisfy the criterion and the remaining N − n elements do not:

PN (n) = N !

n!(N − n)!
pnq N−n . (2.4a)

The number of different arrangements for which n elements satisfy the criterion
and N − n do not is given by the binomial coefficient in the above expression
(Figure 2.2):

number of such configurations =
N !

n!(N − n)!
. (2.4b)

Example 2.5 Consider five air molecules in an otherwise empty room. What
is the probability that exactly two of them are in the front third of the room?
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Figure 2.2 The number
of different ways in which
n of N elements can
satisfy a criterion,
illustrated here for: 1 of 3
(left); 2 of 4 (middle); and
2 of 5 (right). A plus sign
indicates an element that
satisfies the criterion and
a blank indicates one that
does not.

Also, how many different arrangements of these five molecules are there such
that exactly two are in the front?

For each molecule, the probability of being in the front third is 1/3, so p =
1/3, q = 2/3. Our system has N = 5 molecules. The probability for n = 2 of
them to be in the front third is

P5(2) = 5!

2!3!

(
1

3

)2 (2

3

)3

= 80

243
= 0.33.

The number of different arrangements is given by the binomial coefficient

5!

2!3!
= 10.

B.2 Handling factorials

Although these probability calculations are correct for systems of any size, they
become cumbersome if there are more than a few elements. For example, if we
wanted to know the probability that exactly 40 out of 100 flipped coins land
heads, the answer would be

P100(40) = 100!

40!60!

(
1

2

)40 (1

2

)60

.

Although numbers like (1/2)40 can be calculated using logarithms, the facto-
rials (e.g. 100! = 100 × 99 × 98 × 97 × · · ·) become overwhelming when the
numbers are this large.

Fortunately, an approximation known as Stirling’s formula allows us to calcu-
late factorials accurately for larger numbers. Stirling’s formula is

m! ≈
√

2πm
(m

e

)m
, (2.5a)
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or, using logarithms,

ln m! ≈ m ln m − m + 1

2
ln 2πm. (2.5b)

As you will show in a homework problem, this approximation is accurate to 0.8%
for m = 10, and its accuracy increases as m increases.

B.3 Many criteria

How does our treatment apply to the probabilities for distributions involving more
than two possibilities? For example, what if we are interested in the following
distribution of air molecules between the following three parts of a room, from
front to back,

� the front third (p1 = 1/3),
� the next sixth (p2 = 1/6),
� the back half (p3 = 1/2)?

In the problems you will extend the treatment given here to show that for a
system of N elements with a complete set of m mutually exclusive criteria2

whose probabilities are respectively p1, p2, . . . pm , the probability that n1 satisfy
the first criterion, n2 satisfy the second, etc. is given by

PN (n1, n2, . . . , nm) = N !

n1!n2! . . . nm!
pn1

1 pn2
2 . . . pnm

m . (2.6)

Summary of Sections A and B

If f is a function that has the value fs when the system is in state s and if Ps is

the probability that the system is in state s, then the mean value of f is given by

(equation 2.1)

f =
∑

s

fs Ps,

where the sum is over all states s accessible to the system.

If f and g are functions of the state of a system and c is a constant, then

(equations 2.2, 2.3)

f + g = f + g,

c f = c f .

Suppose that we are interested in some criterion for the behavior of a single

element of a system, for which p is the probability that the criterion is satisfied and

q is the probability that it is not satisfied (q = 1 − p). Then for a system of N

2 This means that each element must satisfy one criterion, but only one, so p1 + p2 + · · · +
pm = 1, n1 + n2 + · · · + nm = N .
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elements, the probability that this system is in a state for which n elements satisfy

the criterion and the remaining N − n elements do not is given by (equation 2.4a)

PN (n) = N !

n!(N − n)!
pnq N−n .

The binomial coefficient N !/[n!(N − n)!] is the number of different configurations

of the individual elements for which n satisfy the criterion and N − n do not.

A useful tool for calculating the factorial of large numbers is Stirling’s formula

(equations 2.5a, b),

m! ≈
√

2πm
(m

e

)m
,

or equivalently

ln m! ≈ m ln m − m + 1

2
ln 2πm.

For a complete set of m mutually exclusive criteria, whose probabilities are

respectively p1, p2, . . . , pm , the probability that, out of N particles or elements, n1

satisfy the first criterion, n2 the second, and so on is given by (equation 2.6)

PN (n1, n2, . . . , nm) = N !

n1!n2! · · · nm!
pn1

1 pn2
2 . . . pnm

m .

C Statistically independent behaviors

So far, we have assumed that the behaviors of the individual elements of a system
are statistically independent, that is, that the behavior of each is independent of
the others. For example, we assumed that the probability that coin 2 lands heads
up does not depend on how coin 1 landed.

There are many systems, however, for which the behaviors of the individual
elements are not independent. For example, suppose that you are drawing aces
from a single deck of cards. The probability for the first draw to be an ace is 4/52,
because there are four aces in a deck of 52 cards. For the second card, however,
the probability depends on the first draw. If it was an ace, then there are only three
aces left among the 51 remaining cards. If not, then there are still four aces left.
So the probabilities for the second card would be 3/51 or 4/51, depending on the
first draw. The two behaviors are not statistically independent3 (Figure 2.3).

In physical systems, interactions among particles often mean that any particle
is influenced by the behaviors of its neighbors. Consequently, when we use the
results of this chapter we must take care to ensure that the behaviors of the
individual elements are indeed statistically independent. We may have to choose
groups of particles as our elements perhaps an entire nucleus, or a molecule, or a
group of molecules. But when the criteria are statistically independent, the total

3 You can still use probabilities to handle these situations but not the preceding method, because there

we assumed that p and q for any one element are independent of the behavior of the others.
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Figure 2.3 What is the
probability that the very
next card dealt will be a
queen? Does it depend on
what has already been
dealt? How?

probability with respect to all the criteria is simply the product of the individual
probabilities.

Example 2.6 Consider a single air molecule in an empty room. What are the
probabilities for the positions of that molecule with respect to the front third and
the top half of the room?

� Criterion 1: the molecule is in the front third, p1 = 1/3, q1 = 2/3.
� Criterion 2: the molecule is in the top half, p2 = 1/2, q2 = 1/2.

(The subscripts on the probabilities here indicate the criterion to which they
belong.) The various probabilities with respect to both these criteria are then:

� front third, top half, p1 p2 = (1/3)(1/2) = 1/6;
� front third, bottom half, p1q2 = (1/3)(1/2) = 1/6;
� rear two thirds, top half, q1 p2 = (2/3)(1/2) = 2/6;
� rear two thirds, bottom half, q1q2 = (2/3)(1/2) = 2/6.

Example 2.7 Suppose that you flip three coins and roll two dice. What is the
probability that exactly two of the coins land heads up and that one of the dice
shows a six?

The probability that two of three coins land heads up (p = 1/2, q = 1/2) is,
using result 2.4a,

P3(2) = 3!

2!1!

(
1

2

)2 (1

2

)1

= 3

8
,
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and the probability that one of the two dice shows a six (p = 1/6, q = 5/6) is

P2(1) = 2!

1!1!

(
1

6

)1 (5

6

)1

= 5

18
.

Because the behavior of the dice is independent of the behavior of the coins, we
simply multiply the two together. The answer is(

3

8

)(
5

18

)
= 5

48
.

Using the definition 2.1 of mean values, we can prove that, for two functions
f and g having two statistically independent behaviors, the mean value of the
product of the two functions is simply the product of the mean values:

f g = f g. (2.7)

To show this, take Pi to be the probability that the system is in state i with
respect to the first behavior and W j to be the probability that the system is in state
j with respect to the second behavior. The combined probability for the system
to be in the state (i, j) with respect to the two behaviors is Pi W j . The mean value
of the product f g is then given by

f g =
∑
i, j

(
PiW j

)
fi g j =

∑
i

Pi fi

∑
j

W j g j = f g.

Example 2.8 What would be the mean value of the product of the numbers
showing upwards for two rolled dice?

Let n1 and n2 be the numbers showing on the first and second die, respec-
tively. The two are statistically independent, because how the second die lands is
independent of the first. The mean value of the number showing on either die is

(1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5.

Therefore,

n1n2 = n1 n2 = (3.5)(3.5) = 12.25.

In the homework problems this same thing is calculated the hard way -- namely,
by finding the mean value of n1n2 for all 36 different configurations for the two
dice.

Summary of Section C

When the behavior of one element of a system is unaffected by the behavior of

another, or when an element’s behavior with respect to one criterion is unrelated to

its behavior with respect to another, then the two behaviors are statistically

independent. For statistically independent behaviors, the probabilities are

multiplicative. That is, if P and W are the probabilities for two statistically
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independent behaviors satisfying their respective criteria, then the probability that

both behaviors satisfy the respective criteria is given by the product PW .

If f is a function of one behavior and g is a function of a statistically independent

behavior then the mean value of the product is the product of the mean values

(equation 2.7):

f g = f g.

Problems

Section A
1. Suppose that Ps is the probability that a system is in state s, c is a constant;

and f and g are two functions that have the values fs and gs , respectively,
when the system is in state s. Using the definition of mean values 2.1 prove
that:
(a) ( f + g) = f + g;
(b) c f = c f .

2. A coin is flipped many times. If fheads = 5 and ftails = 27, what is the mean
value of f (i.e., the average value of f per flip)?

3. The number of dots showing on a die is n, and f (n) is some function of n. If
you were to roll many many dice, what would be the mean value of f for
(a) f = (n + 2)2,
(b) f = (n − 2)2,
(c) f = n2 − 5n + 1,
(d) f = n3 − 10?

4. A weighted die is rolled in such a way that the probability of getting a six is
1/2 and the probability of getting each of the other five faces is 1/10. What
would be the average value per roll of.
(a) the number of dots ( fn = n),
(b) the square of the number of dots ( fn = n2)?

5. You have a die that is weighted in such a way that the probability of a six
is 3/8 and the probability of each of the other five states is 1/8. Consider a
function f (n) = (n − 2)2, where n is the number showing. What would be
the average value of this function per roll, if you were to roll the die many
times?

6. Consider a spin-1/2 particle of magnetic moment µ in an external magnetic
field B. Its energy is E = −µB if it is spin up and E = +µB if spin down.
Suppose the probability that this particle is in the lower energy state is 3/4
and that it is in the higher energy state is 1/4. Find the average value of the
energy of such a particle, expressed in terms of µB.
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Section B
7. Consider a system of four flipped coins.

(a) What is the probability that two land heads and the other two tails?
(b) Label the four coins 1, 2, 3, and 4. Make a chart that lists the various

possible configurations that have two heads and two tails. Is the number
of configurations on your chart the same as that predicted by the binomial
coefficient in equation 2.4?

8. Consider a system of five molecules. The probability that any one is in an
excited state is 1/10. Find the probability that there are
(a) none in an excited state,
(b) one and only one in an excited state,
(c) two in excited states.

9. If you roll two dice, what is the probability of throwing “snake eyes” (each
die showing one dot up)?

10. If you were to roll four dice, find the probability that
(a) none lands with six dots up,
(b) one and only one lands with six dots up.

11. If you roll eight dice, find the probability that
(a) five and only five have four dots up and the number of different config-

urations that give this outcome,
(b) five or more have four dots up?

12. Consider five spin-1/2 elementary particles (distinguishable and with no
external fields present). What is the probability that four have spin up and
the other has spin down, and how many different configurations of the five
could give this result?

13. What is the probability for exactly three of five flipped coins to land heads,
and in how many different ways can they land to give this result?

14. Consider five air molecules in an otherwise empty room. What is the prob-
ability that at any instant exactly three of them are in the front third of the
room and the other two are in the back two thirds?

15. For 16 flipped coins, how many different ways could they land with 12 heads
and four tails?

16. Roughly what is the numerical value of 200! in powers of 10? (ex = 100.4343x )

17. Using Stirling’s formula, calculate the probability of getting exactly 500
heads and 500 tails when flipping 1000 coins.

18. If you flip 100 coins, what is the probability that exactly 42 land heads
up?
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19. Suppose you roll 500 dice. Using Stirling’s formula, calculate the probability
of rolling exactly: (a) 50 sixes, (b) 80 sixes, (c) 200 sixes.

20. Test the accuracy of Stirling’s formula by comparing its results percentage-
wise with explicit calculations of n!, for the following values of n: (a) 2,
(b) 5, (c) 10, (d) 20.

21. Consider a system of 100 coins which you can tell apart. (The ability to tell
them apart is important, as we’ll see later in the book.) How many different
configurations are there that give a total of 50 heads and 50 tails?

22. Suppose that you roll three dice and flip three coins. Find the probability of
getting exactly:
(a) one six and one head,
(b) no sixes and no heads,
(c) two sixes and two heads.

23. Calculate the probability of getting exactly two sixes and one five when
rolling five dice. Do this in two different ways, as follows.
(a) First calculate the probability that two of the five dice land sixes, and then

multiply this by the probability that one of the remaining three lands a
five. (note: The remaining three dice have only five ways in which they
can land.)

(b) Next calculate the probability that one of the five dice lands a five, and
then multiply this by the probability that two of the remaining four dice
land a six.

(c) Are the two results the same? (If not, you have made a mistake.)

24. Consider two mutually exclusive criteria, such as the criteria in the previ-
ous problem. An element of a system cannot satisfy both simultaneously.
Suppose that there are r equally probable outcomes, so that p = 1/r is the
probability of satisfying the first criterion. After those elements satisfying the
first have been excluded, there are only r − 1 possibilities for the remaining
elements, so the probability for the second criterion to be satisfied becomes
1/(r − 1). What is the probability PN (n, m) that n out of N elements sat-
isfy the first criterion, and m of the remaining N − n elements satisfy the
second?

25. Start with the binomial probability distribution 2.4, and look at what might
happen to those particles that did not satisfy the criterion (for example, those
molecules that were not in the front third of the room). These failures with
respect to the first criterion might themselves be split into two groups with
respect to another, mutually exclusive, criterion, with probabilities p′ and p′′,
respectively, of satisfying that criterion. For example, those molecules not in
the front third of the room might be in the next one sixth (p′ = 1/6) or the
back half (p′′ = 1/2), so that q = 1 − p = p′ + p′′. Now expand the q N−n
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term in the binomial distribution by using another binomial expansion for
q N−n = (p′ + p′′)N−n to find the probability that, out of these N − n failures
with respect to the first criterion, n′ satisfy the probability-p′ criterion and
the remaining n′′ (= N − n − n′) satisfy the last criterion (i.e., satisfy neither
of the first two). You should wind up with equation 2.6 for the case of three
criteria. You can keep splitting up each of the criteria into subgroups in the
above manner to get the probabilities with respect to any number of mutually
exclusive criteria.

Section C
26. You are dealing cards from a full 52-card, freshly shuffled, deck. You are

interested in whether the first two cards dealt will be clubs. Criterion 1: the
first card is a club. Criterion 2: the second card is a club.
(a) Are these two criteria statistically independent?
(b) If you return the first card to the deck and reshuffle before dealing the

second card, would the two criteria be statistically independent?

27. Answer the questions in Figure 2.3.

28. Suppose that you have two freshly shuffled full decks of cards, and you deal
one card from each.
(a) What is the probability that the first card dealt is an ace?
(b) What is the probability that the second card dealt is a club?
(c) Are the two criteria statistically independent?
(d) What is the probability that the first card dealt is an ace and the second

card dealt is a club?

29. You are involved in a game where two cards are dealt in the manner of the
previous problem. Suppose that the dealer pays you $3 if the second card
dealt is a club, regardless of the first card and that you pay him $1 if the
second card is not a club and the first card is not an ace. (Otherwise, no
money changes hands.) Use equation 2.1 to compute the mean value of the
money you win per game if you play it many times.

30. Consider 10 air molecules in an otherwise empty room. Find the probability
that
(a) exactly four molecules are in the front third and exactly six in the top

half,
(b) exactly three molecules are both in the front third and the top half (that

is, the same molecules satisfy both criteria).

31. You roll two dice many times and are interested in the average value of the
product of the two numbers showing, n1n2. Calculate this product for all 36
possible different configurations of the two dice and take the average of these
36 values. How does your answer compare with that in Example 2.8?
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32. You roll two dice at a time. Die 1 has 6 different possible states and die 2 also
has 6, making a total of 6 × 6 = 36 different ways the two can land. Suppose
that f is the sum of the number of dots showing on the two dice. Calculate
the mean value of f per roll using two approaches.
(a) Sum over all 36 configurations the probability of occurrence of a config-

uration (1/36) times the sum of the dots showing in that configuration.
(b) Noting that the outcomes for the two dice are statistically independent

(the probabilities for the second die are independent of the results for the
first roll), use the result that f + g = f + g. (The two answers should
be the same.)
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The techniques developed in Chapter 2 for predicting the behaviors of small
systems from the behaviors of their individual constituents are correct for systems
of any size; they become cumbersome, though, when applied to systems with
more than a few elements. Fortunately, there is an easy way of streamlining our
calculations.

A Fluctuations

Suppose that we are interested in the outcomes of flipping 1000 coins.
Equation 2.4a gives us the correct probabilities for all 1001 possible outcomes,
ranging from 0 heads to 1000 heads; we get (Figure 3.1)

P1000(0) = 9.3 × 10−302, P1000(1) = 9.3 × 10−299,

P1000(2) = 4.6 × 10−296, · · ·

But these 1001 separate calculations are a great deal of work and give more
information than would normally be useful. What if the system had a million
elements, or a billion?

40



Systems with many elements 41

0.025

0.020

0.015

0.010

0.005

0
400 450 500

s = 16

number of heads

pr
ob

ab
ili

ty

550 600

Figure 3.1 Probabilities
for various numbers of
heads when 1000 coins
are flipped. The
distribution peaks at 500
heads, for which the
probability is 0.0252. As
you can see, the chances
of getting less than 450 or
more than 550 heads are
negligible.

It would be less work, less confusing, and nearly equally informative if we
could just calculate the following two numbers:

� the average number of coins that would land heads if the coin-flip experiment were

repeated many times;
� some measure of the fluctuations we could expect around this value.

In the above case of 1000 flipped coins, for example, it is extremely likely that the
number of heads will fall between 450 and 550 (Figure 3.1). But the probability
of getting exactly 500 heads is only 0.0252.

A.1 Mean value and standard deviation

We now investigate how to calculate mean values and characteristic fluctuations
for any system. We will imagine that we have a large number of such systems,
which have been prepared in the same way (an “ensemble”). For example, we
might have many systems of 1000 flipped coins. Equivalently, we might flip the
same set of 1000 coins many different times.

For large numbers of identically prepared systems having N elements each,
the average number of elements per system that satisfy a criterion is given by

n = pN, (3.1)

where p is the probability for any given element to satisfy the criterion. We can
think of this as the definition of the probability p: it is the fraction of the total
number of elements that satisfy the criterion. Alternatively, this relationship can
be derived from the definition of mean values 2.1.

The average fluctuation of n about its mean value must be zero, because the
definition of the mean value guarantees that the positive fluctuations cancel the
negative ones. But the squares of the fluctuations are all positive numbers. So if
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we average these and then take the square root, we have a meaningful measure
of the deviations, called the “standard deviation” (symbol σ ):

σ =
√

(n − n)2. (3.2)

In the next section we will show that for systems with large numbers of elements,
the distribution of n about the mean is commonly of a form called Gaussian and
that the probability for n to be within one standard deviation of the mean is 0.68.

The standard deviation is easily calculated from the number of elements N
and the probabilities p, q . To show this, we examine σ 2 and use the fact that n is
a constant for the system:

σ 2 = (n − n)2 = n2 − 2nn + n2 = n2 − 2n n + n2 = n2 − n2. (3.3)

We already know that n = Np, but we must still find the mean value of n2:

n2 =
∑

n

n2 PN (n) =
∑

n

n2 N !

n!(N − n)!
pnq N−n .

The easiest way to evaluate this sum is to use the binomial expansion

(p + q)N =
∑

n

N !

n!(N − n)!
pnq N−n

and the trick that

n2 pn =
(

p
∂

∂p

)2

pn,

where we treat p and q as independent variables and evaluate the partial derivative
at the point p = 1 − q . With these, the above expression for the mean value of
n2 becomes

n2 =
∑

n

n2 N !

n!(N − n)!
pnq N−n

=
(

p
∂

∂p

)2 ∑
n

N !

n!(N − n)!
pnq N−n =

(
p

∂

∂p

)2

(p + q)N .

In this last form, we take the two derivatives and use p + q = 1 to get (homework)

n2 = (N p)2 + N pq = n2 + N pq.

Putting this into the last expression in equation 3.3 gives

σ 2 = n2 − n2 = N pq or σ =
√

N pq. (3.4)

According to equations 3.1 and 3.4, as the number of elements in a system
increases, the mean value n increases linearly with N, whereas the standard devi-
ation σ increases only as the square root of N:

n ∝ N, σ ∝
√

N .
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probabilities as a function
of n for systems of 25
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right), with p = 1/2. As N
increases, the absolute
width of the peak
increases, but its relative
width decreases.

Therefore, the fluctuations do not increase as fast as the mean value. The “relative
fluctuation” compares the fluctuations with the mean value and is given by

σ

n
=

√
N pq

N p
=

√
q

N p
≈ 1√

N
. (3.5)

As systems get larger, the fluctuations become a smaller fraction of the mean
values. Thus the larger the system, the more predictable its behavior. This is
illustrated in Figure 3.2.

Summary of Section A

Consider many identically prepared systems having N elements each. If p is the

probability that any one element satisfies a criterion of interest and q is the

probability that it does not, then the average number of elements that satisfy the

criterion is given by (equation 3.1)

n = pN ;

the standard deviation for the fluctuations about the mean value is given by

(equations 3.2, 3.4)

σ =
√

(n − n)2 =
√

N pq,

and the relative fluctuation is given by (equation 3.5)

σ

n
=

√
N pq

N p
=

√
q

N p
≈ 1√

N
.

We will soon show that for sufficiently large systems, the values of n are within one

standard deviation of n 68% of the time.

The fluctuation of a variable is often more interesting than its mean value. For
example, the average electrical current from an AC source is zero, because the
current goes in each direction half the time. Similarly, the average velocity of an
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air molecule in your room is zero, although the individual molecules are moving
very fast. In these and many other examples, the mean value of the variable
may be misleading, suggesting no motion at all. The standard deviation may be
much more illuminating. When the mean value of a variable is zero, its standard
deviation is sometimes called its “root mean square” value, because in this case
it equals the square root of the mean of the squares.

A.2 Examples

Example 3.1 Consider systems of 100 molecules in otherwise empty rooms.
What is the average number of molecules in the front third of the rooms, the
standard deviation about this value, and the relative fluctuation?

For this case, N = 100, p = 1/3, and q = 2/3. Therefore we have

n = pN =
(

1

3

)
(100) = 33.3,

σ =
√

N pq =
√

(100)

(
1

3

)(
2

3

)
= 4.7,

σ

n
= 4.7

33.3
= 0.14.

Example 3.2 Repeat the above for typical real systems of 1028 molecules in
otherwise empty rooms. For this case N = 1028, and p and q remain the same as
above, so

n = pN =
(

1

3

) (
1028

) = 3.3 × 1027,

σ =
√

N pq =
√

(1028)

(
1

3

)(
2

3

)
= 4.7 × 1013,

σ

n
= 1.4 × 10−14.

Notice the tiny relative fluctuation for this system of 1028 particles; the larger
the system, the smaller the relative fluctuations. Macroscopic systems are very
predictable, even though their individual elements are not.

B The Gaussian distribution

We have seen that for systems of more than a few elements, calculating the
probabilities PN (n) from the binomial formula 2.4a can be an extremely tedious
task. Fortunately, there is an easier way. The entire distribution of probabilities
over all possible configurations, or states, can be expressed in terms of the two
parameters n and σ , which we can calculate from equations 3.1 and 3.4. This sim-
plified Gaussian distribution involves approximations that become increasingly
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reliable as the number of elements in the system gets larger. Therefore, the Gaus-
sian distribution is useful in those cases where the binomial formula is not. For
small systems, only the binomial approach is correct. For larger systems, both
approaches are accurate but the Gaussian approach is much simpler.

B.1 The Taylor series approach

Our derivation of this simplified formula will involve a Taylor series expansion.
The derivation is given in Appendix B and goes as follows. Consider a smooth
differentiable function f (x). Suppose that we know the value of this function and
all its derivatives at some point x = a. Then we can calculate the value of the
function at any other point through the formula

f (x) =
∞∑

m=0

1

m!
f (m)(a) (x − a)m, (3.6)

where

f (m)(a) = dm f

dxm

∣∣∣∣
x=a

.

Writing out the first few terms explicitly gives

f (x) = f (a) + f ′(a)(x − a) + 1
2 f ′′(a)(x − a)2 + · · · . (3.6′)

Notice that if the function is a constant, only the first term contributes. If the
function is linear in x, only the first two terms contribute, and so on. Notice also
that the higher-order terms become smaller as x − a becomes smaller. These
two observations tell us that the smoother the function and the closer x is to a,
the more accurately the first few terms approximate the function at the point x.
Therefore, in using the Taylor series expansion, it is advantageous to:

� apply it to functions which are as smooth as possible; and
� choose a to be close to the values of x in which we are interested.

In our case we consider PN (n) to be a continuous function of n. To satisfy
the first criterion, we expand the logarithm of PN (n), because the logarithm of a
function varies much more slowly and smoothly than does the function itself. To
satisfy the second criterion, we expand around the point of highest probability. If
nmax represents the state of the system for which PN (n) is a maximum then we
are most likely to be interested in values of PN (n) for n near nmax, because they
occur more frequently.

We assume that the probability peaks at n (nmax = n). This may not be
true for small systems with skewed distributions. But for larger systems, the
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Figure 3.3 Relative
frequency of occurrence
vs. the fraction of the
flipped coins that land
heads, for systems of 10,
100, and 1000 coins.
Larger systems have
more peaked distributions
and smaller relative
fluctuations.

probability distribution is more sharply peaked (Figures 3.2 and 3.3), forcing
nmax and n closer together. Consequently, this approximation is indeed justified
in those larger systems for which we are seeking an alternative to the binomial
expansion.

B.2 Derivation

We begin our derivation by expanding the logarithm of PN (n) about the point
n = n, according to the Taylor series formula (we drop the subscript N to avoid
clutter):

ln P(n) = ln P( n ) + d

dn
ln P(n)

∣∣∣∣
n=n

(n − n)

+ 1

2

d2

dn2 ln P(n)

∣∣∣∣
n=n

(n − n)2 + · · ·

To evaluate these terms, we write1

ln P(n) = ln
N !

n!(N − n)!
pnq N−n

= ln N ! − ln n! − ln(N − n)! + n ln p + (N − n) ln q

and then use Stirling’s formula 2.5a to write out the logarithms of the factorials
(equation 2.5):

ln m! ≈ m ln m − m + 1

2
ln 2πm.

1 ln(ab) = ln a + ln b, ln(a/b) = ln a − ln b, and ln ab = b ln a.
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In this form, we can take the derivatives and evaluate the first few terms at the
point n = n (with n = Np and q = 1 − p) to get (homework):

ln P(n) = 1

2
ln

1

2π N pq
= 1

2
ln

1

2πσ 2
,

d

dn
ln P(n)

∣∣∣∣
n=n

= 0,

d2

dn2 ln P(n)

∣∣∣∣
n=n

= − 1

N pq
= − 1

σ 2
.

The first derivative is zero and the second derivative is negative, as must be true
if the function indeed has its maximum at the point n = n. We ignore third-
and higher-order terms, because the expansion to second order already gives us
amazingly accurate results for P(n), even for values of n far away from n. Our
expansion is now

ln P(n) = 1

2
ln

1

2πσ 2
+ 0 + 1

2

(
− 1

σ 2

)
(n − n)2 + · · ·

and, taking the antilogarithm,

P(n) = 1√
2πσ

e−(n−n)2/2σ 2
with σ 2 = N pq, n = N p. (3.7)

We will encounter Gaussian distributions like this several times in this course, so
we add a summary paragraph for future reference.

Any function of the form

F(z) = Ce−Bz2
(Gaussian) (3.8)

is called a Gaussian distribution and has a characteristic bell-curve form. As we
saw above, the constant B is related to the standard deviation σ and to the second
derivative of the logarithm of the function through

B = 1

2σ 2
= − 1

2

∂2

∂z2
ln F

∣∣∣∣
z=0

. (3.9)

If the total area under the curve is unity, as must be true for probability dis-
tributions,2 then the height and width of the bell curve are related through
C = (B/π )1/2 (homework), so

F(z) =
√

B

π
e−Bz2

, for
∫ +∞

−∞
F(z)dz = 1. (3.10)

2 That is, we are absolutely sure that the system must be in one of its possible configurations, so the

sum of the probabilities over all possible configurations must equal unity.
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Figure 3.5 For a
Gaussian distribution,
68.3% of all events are
within one standard
deviation of the mean (n),
95.4% are within two
standard deviations, and
99.7% are within 3
standard deviations.

B.3 Accuracy and spread

We know that the Gaussian distribution 3.7 should be more accurate for larger
systems. But how large must they be? In Figure 3.4 the predictions of the Gaussian
approximation (crosses) and the correct predictions of the binomial formula (dots)
are compared for systems of N = 4 and N = 10 elements, with p = q = 1/2. It
is seen that even for N = 4 the Gaussian approximation is remarkably accurate,
and for N = 10 the two are almost indistinguishable.

To find the probability that n is within one standard deviation of n, we sum
(numerically) the probabilities over all n between n − σ and n + σ :

n+σ∑
n=n−σ

P(n) =
n+σ∑

n=n−σ

P(n)�n ≈
∫ n+σ

n−σ

P(n)dn = 0.683. (3.11)

That is, for a Gaussian distribution 68.3% of all events lie within one standard
deviation of the mean. In a similar fashion we find that 95.4% of all events lie
within two standard deviations of n, 99.7 within three standard deviations, etc.
(Figure 3.5).
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Summary of Section B

For a system of N elements, each of which has probability p of satisfying the criterion

of interest and probability q of not satisfying it, the probability that n elements

satisfy the criterion and the remaining N − n do not is given by (equation 2.4a)

PN (n) = N !

n!(N − n)!
pnq N−n

and, for systems with more than just a few elements, we can write this as

(equation 3.7)

P(n) = 1√
2πσ

e−(n−n)2/2σ 2
,

where (equations 3.1, 3.4)

n = N p and σ =
√

N pq.

Equation 2.4a is correct for all systems, but it is most useful for very small systems.

For larger systems the second form, 3.7, is easier to use, and its accuracy increases

as the size of the system increases.

Any function of the form (equation 3.8)

F(z) = Ce−Bz2
(Gaussian)

is called Gaussian. The constant B is related to the standard deviation σ and to the

second derivative of the logarithm of the function through (equation 3.9)

B = 1

2σ 2
= −1

2

∂2

∂z2
ln F

∣∣∣∣
z=0

.

If the area under the curve is equal to unity, as must be true for probability

distributions, then (equation 3.10)

C =
√

B

π
and therefore F(z) =

√
B

π
e−Bz2

.

B.4 Examples

We illustrate the application of the Gaussian distribution to probability calcula-
tions with the following examples.

Example 3.3 Suppose that there are 3000 air molecules in an otherwise empty
room. What is the probability that exactly 1000 of them are in the front third of
the room at any instant?

For the Gaussian distribution, we need the values of n and σ . For this problem,

N = 3000, n = 1000, p = 1/3, q = 2/3,

so

n = pN = 1000, σ =
√

N pq = 25.8.
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With these, we have

1√
2πσ

= 0.0155,
(n − n)2

2σ 2
= 0,

and therefore

P3000(1000) = 1√
2πσ

e−(n−n)2/2σ 2 = 0.0155e−0 = 0.0155.

Example 3.4 For the preceding case of 3000 air molecules in an otherwise
empty room, what is the probability that exactly 1100 air molecules will be in
the front third of the room at any instant?

Everything is the same as above except that n = 1100. So the exponent in the
Gaussian formula 3.7 is

− (n − n)2

2σ 2
= −7.50.

Consequently, the answer to the question is

P3000(1100) = 1√
2πσ

e−(n−n)2/2σ 2 = 0.0155e−7.5 = 8.55 × 10−6.

C The random walk

C.1 The problem

One important further application of probabilities is the study of motion that
occurs in individual discrete steps. If each step is random, independent of the other
steps, then the study of the net motion is referred to as the “random walk problem.”

The problem relates to an ensemble of drunkards who begin their random
strolls from a single light post. The lengths and directions of their steps might be
influenced by such things as the wind, the slope of the ground, etc. But, given the
probabilities of the various directions and lengths for a single step, we can use
the tools of this chapter to answer the following two questions:

� after each person has taken N steps, what will be the average position relative to the

starting point?
� How spread out will the drunks be? That is, what will be the standard deviation of their

positions around their average position?

Motion in more than one dimension can be broken up into its individual
components, so we develop the formalism for motion in one dimension.

Among the studies that fit into the random walk framework is molecular diffu-
sion, for which a step would be the distance traveled between successive collisions
with other molecules. A molecule may go in any direction and may go various
distances between collisions. Similarly, the travel of electrons through a metal, of
“holes” through a semiconductor, and of thermal vibrations through a solid are
all random walk problems.
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Sometimes the motion for any one step is not completely random. In molecular
diffusion, for example, a molecule is more likely to scatter forward than backward,
indicating that its motion after a collision is not completely independent of its
motion before the collision. But after some number of collisions, any trace of its
previous motion will be lost. So we could fit this type of problem into the random
walk framework simply by letting a single step encompass the appropriate number
of collisions.

C.2 One step

The most difficult part of this problem is to find the average distance traveled and
the standard deviation for one single step, which we label s and σ , respectively.
These two parameters answer the following two questions: “if a large number of
drunks had all started out at the same spot and had all taken one step of variable
size, where would they be, on average, and how spread out would they be? Once
these questions are answered, it is relatively easy to answer these questions for the
average position and spread after N steps, which we label SN and σN , respectively.

Suppose that Ps is the probability that a step is of length s in the direction of
interest. Alternatively, suppose that P(s)ds is the probability that the length of the
step falls within the range ds. Then by the definition of mean values, the average
distance traveled and the average of the square of the distance are given by

s =
∑

s

sPs or s =
∫

s P(s)ds (3.12)

and

s2 =
∑

s

s2 Ps or s2 =
∫

s2 P(s)ds. (3.13)

From these we also get the standard deviation (equation 3.3):

σ 2 = (s − s)2 = s2 − 2s s + s2 = s2 − s2. (3.14)

C.3 N steps

The equations (3.12)--(3.14) refer to a single step. We now find the average
distance traveled and the standard deviation after each drunk has taken “N ”
steps.

The total distance gone by any particular drunkard is the sum of the distances
gone during each step:

SN =
N∑

i=1

si = s1 + s2 + s3 + · · · + sN

It is easy to average this over all drunks. Each step is completely random and
governed by the same probabilities as all other steps. So the average length of
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each is the same:

s1 = s2 = s3 = · · · = s.

Therefore, the average distance traveled after N steps is simply the product of the
number of steps times the average distance traveled in any step, Ns:

SN = s1 + s2 + s3 + · · · + sN = s + s + s + · · · + s = Ns. (3.15)

To calculate the standard deviation after N steps, we start from the definition.
As above,

σ 2
N = (SN − SN )2 = S2

N − SN
2
.

The term SN
2

is simply the square of the above result for SN , but to find S2
N , we

first write

S2
N = (s1 + s2 + s3 + · · ·)2 .

When we square the expression on the right, we get N 2 terms altogether. N of
these terms are squared terms, such as s2

1 , s2
2 , etc., and the remaining N (N − 1)

terms are cross terms, such as s1s2, s1s3, etc. Thus

S2
N = (

s2
1 + s2

2 + s2
3 + · · ·) + (s1s2 + s1s3 + · · · + s2s1 + s2s3 + · · · + s3s1 + · · ·)

= squared terms + cross terms.

In this form, the averaging is easy. Since the probability is the same for each
step, we have for the N squared terms

s2
1 = s2

2 = s2
3 = · · · = s2.

For the N (N − 1) cross terms, we use the fact that the steps are independent of
each other. Therefore we use result 2.7 that f g = f g for statistically independent
behaviors and get

s1s2 = s1s3 = s2s3 = · · · = s s = s2.

Combining these results for the N squared terms and the N (N − 1) cross terms,
we have

S2
N = (

s2
1 + s2

2 + s2
3 + · · ·) + (s1s2 + s1s3 + · · · + s2s1 + s2s3 + · · · + s3s1 + · · ·)

= Ns2 + N(N − 1)s2.

With this and the result 3.15 that SN = Ns, we have for the square of the standard
deviation

σ 2
N = S2

N − SN
2 = [Ns2 + N (N − 1)s2] − (Ns)2

= N
(

s2 − s2
)

= Nσ 2.
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Taking the square root of both sides of this equation we find that the standard
deviation for N steps is equal to the product of

√
N and the standard deviation

for any one step:

σN =
√

Nσ. (3.16)

Notice that the average distance traveled, SN , increases linearly with the num-
ber of steps N, whereas the standard deviation increases only as the square root√

N . In comparison with the distance gone, the position of a random walker gets
relatively more predictable as N increases (provided that s 
= 0) but absolutely
less predictable (Figure 3.6).

σN

SN
=

√
Nσ

Ns
≈ 1√

N
(3.17)

Note the similarity to the binomial probability distribution (equations 3.1, 3.4,
3.5), where the mean value increases linearly with N, the standard deviation as√

N , and the relative fluctuation as 1/
√

N (i.e., it decreases with N ).

Summary of Sections B and C

For the random walk problem in any one dimension, if Ps is the probability that

a step covers a distance s or P(s)ds is the probability that the length of the step

falls within the range (s, s + ds), then the average distance traveled and the

average squared distance traveled after each drunk takes one step are given by

(equation 3.12)

s =
∑

s

sPs or s =
∫

sP(s)ds

and (equation 3.13)

s2 =
∑

s

s2Ps or s2 =
∫

s2P(s)ds.

The square of the standard deviation is given by (equation 3.14)

σ 2 = (s − s)2 = s2 − s2.

After N steps the average distance traveled and the standard deviation are

(equation 3.15)

SN = Ns

and (equation 3.16)

σN =
√

Nσ.
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N = 1

N = 5

N = 20

Figure 3.6 Illustration of
the average distance gone
(shown by arrows) and
the standard deviation
(shown by the shaded
disks) after 1, 5, and 20
steps, with s = 1 and
σ =2. See equation 3.17.
Note that for one step, the
standard deviation is
large compared with
average distance traveled
but that after 20 steps the
reverse is true.

C.4 Conduction in metals

As an example of the random walk problem, we consider a very approximate
picture for the motion of conduction electrons in a metal. We will assume that
the random thermal motion of the electrons causes each to undergo about 1012

collisions per second, on average, and that typically they travel a root mean square
distance σ in any direction of about 10−8 m between collisions. Normally, if all
directions of travel are equally likely, the average length of a step in any single
direction is zero.

In the presence of an electric field, however, one direction would be slightly
favored. In a typical case of conduction, the average net distance s traveled
between collisions is 10−15 m in the direction favored by the field. This is ten
million times smaller than the root mean square length of a single step due to
thermal motion, so you can see that the influence of the electric field is very small
compared with the random thermal motion. To sum up,

s = 10−15 m, σ= 10−8 m.

We can use the random walk method to calculate the motion of the conduction
electrons over an extended time period. Let’s see what happens after 10 minutes
(600 seconds) have passed, for example. At 1012 collisions per second, the number
of steps taken in 600 seconds is N = 6 × 1014, so the average distance gone and
the standard deviation are

SN = Ns = 6 × 1014(10−15 m) = 0.6 m,

σN = √
Nσ = √

6 × 1014(10−8 m) = 0.2 m.

Notice that after 6 × 1014 steps the standard deviation is smaller than the
average displacement, even though it was ten million times larger than the
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average displacement for one single step. The larger the number of steps, the
more predictable is the behavior. Does this sound familiar?

Problems

Section A
1. Consider many systems, each having 100 rolled dice. Suppose that we are

interested in the number of dice per system showing sixes. For these systems,
calculate
(a) the mean number of sixes,
(b) the standard deviation about this value,
(c) the relative fluctuation.

2. Repeat the above problem for systems of 108 rolled dice.

3. Using the theorem that the mean value of a constant times a function equals
the constant times the mean value of the function (c f = c f ), prove that the
mean value of (n − n)2 is n2 − n2 (n is a constant).

4. For air at room temperature, the probability that any one molecule is in an
excited electronic state is about 10−10 (p = 10−10, q ≈ 1). In a typical room
there are about 1028 air molecules. For this case, calculate
(a) the mean number of excited molecules,
(b) the standard deviation,
(c) the relative fluctuation.

5. There are just 30 air molecules in an otherwise empty room. Calculate
(a) the average number that will be in the front third of the room at any time,
(b) the standard deviation about this value,
(c) the relative fluctuation.

6. Repeat the above problem for 3 × 1027 air molecules in an otherwise empty
room.

7. Suppose there are 100 ammonia molecules in a room. Find
(a) the average number that are in the front half of the room,
(b) the standard deviation about this number,
(c) the probability that exactly 50 are in the front half of the room at any

instant,
(d) the probability that exactly 53 are in the front half of the room at any

instant.

8. In a certain semiconductor, the probability that an electron jumps from the
filled “valence band” to the empty “conduction band” is 10−10 (i.e., 1 chance
in 1010). If there are 1024 electrons in the valence band, find
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(a) the average number of electrons in the conduction band at any instant,
(b) the standard deviation for this number of electrons in the conduction

band.

9. In deriving the expression for the standard deviation following equation 3.3
we showed that

n2 =
∑

n

n2 N !

n!(N − n)!
pnq N−n =

(
p

∂

∂p

)2 ∑
n

N !

n!(N − n)!
pnq N−n

=
(

p
∂

∂p

)2

(p + q)N .

(a) Explain the justification for each of the three steps in this series of equa-
tions.

(b) Derive a corresponding expression for calculating n.
(c) Evaluate both expressions to show that n = Np and σ 2 = N pq.

Section B
10. Consider identically prepared systems, each having 600 rolled dice. Suppose

we are interested in the number of dice per system that are showing sixes. Find
(a) the average number of sixes per system,
(b) the standard deviation σ ,
(c) the values of A and B in the probability distribution P600(n) =

Ae−B(n−n)2
,

(d) the probability that exactly 100 of 600 will show sixes,
(e) the probability that exactly 93 of 600 will show sixes.

11. In the above problem, what is the number of different possible combinations
of the dice such that 100 show sixes and 500 do not?

12. In the derivation of the Gaussian form of the probability distribution, PN (n),
we showed, using ln ab = ln a + ln b, ln a/b = ln a − ln b, ln ab = b ln a,
that

ln P(n) = ln
N !

n!(N − n)!
pnq N−n

= ln N ! − ln n! − ln(N − n)! + n ln p + (N − n) ln q.

(a) Rewrite this expression, expanding all the factorials on the right-hand
side using Stirling’s formula,

ln m! ≈ m ln m − m + 1

2
ln 2πm.

(b) Show that

ln P(n = n) = 1

2
ln

1

2π N pq
= 1

2
ln

1

2πσ 2
,

using n = N p, q = 1 − p, ln ab = ln a + ln b.
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(c) Take the derivative of the expression for ln P(n) in part (a) and drop terms
that go to zero as n gets very large. Then evaluate this at n = n = N p to
show that d

dn ln P(n)
∣∣
n=n

= 0.

(d) Following a procedure like that in part (c), take the second derivative and
show that d2

dn2 ln P(n)
∣∣
n=n

= − 1
N pq = − 1

σ 2 .

(e) Combine these results and the Taylor series expansion to show that
P(n) = 1√

2πσ
e−(n−n)2/2σ 2

.

13. For large systems, we can turn the sum over probabilities for all possible
configurations into an integral, as indicated in equation 3.11. Because the
integrand is nearly zero outside the range (0, N), we can expand the range
of integration to (−∞, +∞) with negligible effect and use

∫ ∞
−∞ e−ax2

dx =√
π/a. Do this for the Gaussian approximation and show that this sum is

equal to unity. Why should it equal unity?

14. You are interested in the number of heads when flipping 100 coins. In the
Gaussian approach, with PN (n) = Ae−B(n−n)2

, what are the values of the
constants A and B? Find the probability of obtaining exactly the following
numbers of heads: (a) 50, (b) 48, (c) 45, (d) 40, (e) 36.

15. What is the ratio of PN (n = n ± σ ) and PN (n = n)?

16. Suppose you flip 400 coins many times. Find
(a) the average number of heads per time,
(b) the standard deviation about this value,
(c) the probability that exactly 200 would land heads,
(d) the probability that exactly 231 would land heads.

17. Imagine that you were to roll 360 dice many times. Find
(a) the average number of sixes showing each time,
(b) the standard deviation around this value,
(c) the probability of getting exactly 60 sixes,
(d) the probability of getting exactly 74 sixes.

18. Suppose that we have 10 000 spin-1/2 particles, which are either spin up or
spin down. Thermal agitation causes them to flip around, so that any one
particle spends roughly half the time up and half down. On average, at any
instant there will be 5000 up and 5000 down.
(a) What is the standard deviation for fluctuations around this value?
(b) What is the probability that at a given instant there are exactly 4900 up

and 5100 down?

19. Consider 10 000 atoms, each of which has a probability 0.1 of being in an
excited state. Assuming a Gaussian distribution, calculate the probability that
the number of atoms in an excited state is (a) 1000, (b) 100.
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20. Suppose you roll 180 dice, and you are interested in how many land with six
dots up. Assume that the distribution can be approximated as being Gaussian.
(a) What is the probability that exactly 30 land with six dots up?
(b) According to the Gaussian formula, what is the probability that 181 of

the 180 land with six dots up? (Note that the answer is impossible, which
means that the Gaussian result is technically in error.)

21. Compare the Gaussian prediction for the probability with the correct
(binomial) result for the following cases:
(a) 1 of 6 dice lands a six,
(b) 3 of 6 dice land sixes,
(c) 0 of 6 dice lands a six.

22. Compare the Gaussian prediction for the probability with the correct
(binomial) result, for the following cases:
(a) 10 of 60 dice land sixes.
(b) 8 of 60 dice land sixes.
(c) 15 of 60 dice land sixes.
(d) 0 of 60 dice lands a six.

23. Compare the Gaussian prediction for the probability with the correct
(binomial) result for the following cases:
(a) 10 of 20 coins land heads,
(b) 12 of 20 coins land heads,
(c) 15 of 20 coins land heads,
(d) 2 of 20 coins land heads.

24. The Gaussian distribution that we derived is of the form PN (n) = Ae−B(n−n)2
,

where A and B are constants. Suppose that we have for the first derivative in
the Taylor series expansion

d

dn
ln P(n)

∣∣∣∣
n−n

= ε,

where ε is small but not zero. What would the corresponding form of PN (n)
be in this case?

25. You are now going to show that, in the Gaussian distribution P(x) =
Ae−Bx2

, the constant A is equal to
√

B/π . (E.g., if B = 1/2σ 2 then A =
1/

√
2πσ .) Do this by insisting that the sum over probabilities must equal

unity,
∫

P(x)dx = 1. To make this difficult integral easier, first square it:∫
P(x)dx

∫
P(y)dy = 12= 1. Then combine the integrands and turn the area

integral, over x and y into an area integral over polar coordinates. This integral
is easy to do and should give you the desired result.

26. A certain crystal contains 400 defects, which migrate randomly throughout its
volume. We are interested in how many of these are in the crystal’s top layer,
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which makes up one tenth of the crystal’s total volume. If we approximate
the probability that n of the 400 defects are in this top layer by PN (n) =
Ae−B(n−n)2

, find
(a) the numerical value of B,
(b) the numerical value of A,
(c) the probability of there being exactly 48 defects in the top layer at any

instant.

Section C
27. A bunch of “digital drunks” can only take steps of (+1, 0, −1) meters in the

x direction. A strong wind is blowing, so the probabilities are not symmet-
rical, being given by P(−1) = 0.3, P(0) = 0.2, P(+1) = 0.5. What are the
average distance gone and the standard deviation for
(a) one step,
(b) 400 steps?
(c) What is the ratio σ/s for one step and for 400 steps?

28. Consider “digital drunks” as in the previous problem, except that now they
can take steps in one dimension of lengths (0, ±1, ±2) meters. Suppose that
the probabilities for each of these step lengths are P(−2) = 0.1, P(−1) =
0.1, P(0) = 0.3, P(1) = 0.3, P(2) = 0.2. What are the average distance
gone and the standard deviation for (a) one step, (b) 400 steps? (c) What
is the ratio σ/s for one step and for 400 steps?

29. An ammonia bottle is opened very briefly in the center of a large room,
releasing many ammonia molecules into the air. These ammonia molecules
go on average 10−5 m between collisions with other molecules, and they
collide on average 107 times per second. After each collision they are equally
likely to go in any direction.
(a) What is the average displacement in one dimension (say the z-dimension)

for a single step? (Hint: If one step is of length a, then the z-component
of this step is (a cos θ ). Averaging any function f over all solid angles
gives f = (1/4π )

∫
f sin θ dθdφ.)

(b) What is the square of the standard deviation for any one step? (Hint:
σ 2 = s2 − s2. The second of these terms is the square of that calculated
in part (a). For the other term, see the hint in part (a) for averaging a
function.)

(c) What is the average displacement in the z direction of the escaped ammo-
nia molecules after 2 seconds?

(d) What is the standard deviation of the value obtained in part (c)?
(e) If you were on the z-axis and 6 m from the bottle, how long would it

take before more than 32% of the ammonia molecules had positions that
were farther from the bottle in the z direction than you?
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30. A tiny drop of dye is put in a very still tub of water. The dye molecules travel
about 10−11 m between collisions and undergo about 4 × 1013 collisions
per second. The direction of any step is completely arbitrary; all directions
are equally probable. For molecular motion in one direction, calculate the
average distance traveled and the standard deviation after (a) one step, (b)
one minute, (c) one year (3.17 × 107 seconds). (Refer to the hints in the
previous problem if necessary.)

31. A large number of holes at a particular point start to migrate through a
semiconductor that has no external field. After each collision with a lattice
site, a hole is equally likely to go in any direction. Such collisions occur
roughly 1013 times per second, and the hole goes an average of 3 × 10−10

m between collisions. Using the hints in problem 29, calculate for motion in
any one dimension the average distance traveled and the standard deviation
after (a) one step, (b) one second.

32. Consider the motion of some electrons in a semiconductor that has an electric
field across it. Suppose that between collisions an average electron goes
10−16 m in the direction favored by the field, with a standard deviation of
10−9 m. It undergoes 1014 collisions per second. Find the average distance
traveled and the standard deviation after (a) 1 second, (b) 5 minutes. (c)
Suppose that the probability distribution for a single step is of the form
P(x)dx = Ae−B(x−x0)2

dx . What are the values (with units) of A, B, and x0?

33. You put a voltage across a metal wire and examine the progress of a group
of electrons that begin at a certain point. You notice that after 4 seconds they
have gone an average distance of 0.10 m in the +x direction through the wire
and have spread out to the point where their standard deviation about this
location is 10−3 m. They undergo 1012 collisions per second.
(a) What is the average distance gone in the +x direction between any two

successive collisions?
(b) What is the standard deviation for the average distance traveled between

any two successive collisions?
(c) If the density of conduction electrons is 1027 m3 and the wire has a radius

of 1 mm, what is the electrical current through this wire?

34. Energy produced in the center of the Sun has a hard time finding its way
out. We can estimate roughly how long it takes an average photon to get
out by looking at the motion in one dimension only. On average, a photon
goes about 1 cm between collisions with hydrogen nuclei or electrons and
undergoes about 108 such collisions per second. (Use the hints in problem
29 if necessary.)
(a) What is the average distance traveled in any dimension per step?
(b) What is the standard deviation about this value?
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(c) The radius of the Sun is about 7.0 × 108 m. About how many steps must
a photon take before having a 32% chance of being outside the Sun in
this dimension?

(d) To how many years does this number of steps correspond? (1 year =
3.17 × 107 seconds).

35. Imagine that there is a brief radiation leak at a nuclear power plant. The
radioactive gas molecules have an average speed of 360 m/s and a mean
free path (i.e., an average distance between collisions) of 3 × 10−3 m. The
root mean square step length, projected in any one direction (e.g., in the x
direction) is 1.73 × 10−3 m. Suppose that this leak happens to occur when
the air is perfectly still, with no turbulence or other mixing at all. What is
the characteristic radius of the radioactive cloud after 1 minute, 1 hour, and
1 day?

36. Consider the expression (s1 + s2 + s3 + · · · + sN )2. By writing out the terms
explicitly, show that there are (i) N 2 terms altogether, (ii) N squared terms,
and (iii) N (N − 1) cross terms for (a) N = 2, (b) N = 3.

37. Given that σ 2
N = S2

N − SN
2
, where S2

N = Ns2 + N (N − 1)s2 and SN = Ns,
show that σ 2

N = Nσ 2, if s and σ are the average distance traveled and the
standard deviation for one step.





Part III
Energy and the first law
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A The general idea

Our investigations of larger systems begin with their internal energy, which
involves the relative motion and interactions among the system’s own particles. It
does not include interactions with or motion relative to objects outside the system.
The internal energy of a nail, for example, would include the energy of vibra-
tion of the atoms and the motions and interactions of the conduction electrons
(Figure 4.1). But it would not include the nail’s potential energy or motion relative
to the Earth, for example. Of course, if you enlarge the system to include both the
Earth and the nail, then these would be part of the internal energy of this larger
system, but they are not part of the internal energy of the nail by itself.

B Potential energies

We now examine the energies of the individual particles in solids, liquids, and
gases, by means of models that are useful in developing intuition for these systems.

B.1 General thoughts

Imagine a particle that is anchored in place by interactions with its neigh-
bors. We can use a Taylor series expansion (Appendix B) to write its potential

65
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Figure 4.1 (a) The
internal energy of a nail
includes such things as
the vibrations of the iron
atoms and the potential
and kinetic energies of
the conduction electrons.
(b) If the nail were thrown
over a cliff, its motion
relative to the Earth and
its potential energy due to
the Earth’s gravity would
not be part of its internal
energy, because they
involve more than just the
nail itself.

energy u(x) (Figure 4.2) as a function of the displacement x from its equilibrium
point:

u(x) = u(0) + du

dx

∣∣∣∣
x=0

x + 1

2

d2u

dx2

∣∣∣∣
x=0

x2 + · · · .

The first derivative is zero, because the potential energy is a minimum at equi-
librium. For sufficiently small values of x, terms of order x3 and higher can be
ignored, so we can write the particle’s potential energy as

u(x) ≈ u0 + 1
2 κx2, (4.1)

where u0 = u(0) and κ are the potential energy and its second derivative at the
equilibrium point, respectively. We get similar expressions for displacements in
the y and z dimensions, so each anchored particle is a tiny harmonic oscillator in
all three dimensions.

u(x)

x = 0 x = 0 x = 0
x

Figure 4.2 Plot of potential energy versus x for an arbitrary potential energy
function for a particle. Near any relative minimum, at which we can choose x = 0,
the potential is parabolic, i.e., u(x) ≈ u0 + (1/2)κx 2 for small displacements x. This
can be shown mathematically by using a Taylor series.
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Figure 4.3 The potential energy of a particle due to just one neighbor. We can
imagine that one particle is anchored at the origin and the other is coming from
infinitely far away. It is convenient to think of the particle and its potential energy as
a ball on a hill. (a) When the forces are repulsive, the particle must go ‘‘uphill”
against these repulsive forces, and its potential energy is positive. (b) When forces
are attractive, the incoming particle is going ‘‘downhill”and its potential energy is
negative. Plot (c) is typical for the interactions between most atoms and molecules --
weakly attractive at long ranges but strongly repulsive at very short ranges, where
their electron clouds overlap. If the interactions were repulsive at all ranges, as in
plot (a), the particles of the system would all fly apart unless they were confined
under pressure in some container.

The depth of the potential well u0
1 depends on the strength of the interactions

(Figures 4.3, 4.4). Because these interactions depend on the motions and spacings
of the particles (Figure 4.5), u0 depends on temperature, pressure, and particle
concentration:2

u0 = u0(T, p, N ). (4.2)

For gases u0 is nearly zero, because on average the molecules are far apart and
their mutual interactions are negligible. For most solids, u0 is negative and nearly
constant, because the atoms are bound to one another and the interatomic spacing
changes only very slightly with large changes in temperature and pressure.

In liquids, however, the molecules are both mobile and close together. At low
temperatures, they move more slowly and have time to seek the preferred orienta-
tions of lower potential energy. At higher temperatures, the increased molecular

1 Potential energies can be measured relative to any arbitrary reference level, but the standard con-

vention is that the potential energy is zero when a particle is all by itself and not interacting with

anything else. Using this convention, u0 is negative when particle interactions are attractive, and

positive when they are repulsive.
2 If there is more than one type of particle, we would have to specify the number of each: N →

N1, N2, . . .
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Figure 4.4 The potential
energy of a particle due to
two neighbors. In any one
dimension, the combined
potential energy of the
particle (solid line) is the
sum of that due to the
particles on its left and on
its right (broken lines).
(Top) If the interactions
are repulsive, u0 is
positive. (Bottom) If the
interactions are attractive,
u0 is negative.

speeds and randomized motions tend to reduce their time in such preferred ori-
entations, so the potential wells become shallower. As heat is added to liquids,
then, not all goes into the motions of the particles. Some goes into raising u0.
This extra avenue for storing energy gives liquids correspondingly larger heat
capacities.

The depth of the potential well u0 may change abruptly at phase transitions if
there are large changes in interparticle spacing and/or interactions.

B.2 Solids, liquids, and gases

In a solid, the individual atoms are held in place by electromagnetic interac-
tions with neighboring atoms as if they were bound in place by tiny springs
(Figure 4.5). Each atom vibrates in all three dimensions around its equilibrium
position, and its energy is given by

ε = εpotential + εkinetic

= u0 + 1

2
κx2 + 1

2
κy2 + 1

2
κz2 + 1

2m
p2

x + 1

2m
p2

y + 1

2m
p2

z . (4.3)

It can be seen that εpotential is made up of two parts, the potential energy reference
level u0 and the potential energy of vibration. Some solids are not isotropic, and
then the constants κ may be different in different directions.
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low concentration

solidhigh concentration

Figure 4.5 (Left) The
depth of the potential well
u0 (Figures 4.4, 4.7)
depends on the motions
and spacings of the
molecules, which change
with temperature and
pressure. (Right)
Interactions among
neighboring atoms in
solids make them behave
as if they were connected
together by tiny springs.

In liquids, the potential energies of the mobile molecules fluctuate rapidly as
the configurations of the other molecules around them change. So the potential
energy reference level u0 is an average or “mean field” value, and the total energy
of a molecule in a liquid can be written as

ε = εpotential + εkinetic = u0 + 1

2m
p2

x + 1

2m
p2

y + 1

2m
p2

z . (4.4)

In gases, neighboring particles are usually so far apart that interactions are
negligible. So, for most cases, the potential energy is minuscule and we can treat
a particle’s energy as purely kinetic:

ε = εkinetic = 1

2m
p2

x + 1

2m
p2

y + 1

2m
p2

z . (4.5)

C Quantum effects

C.1 Rotations and vibrations

Collisions with other molecules might cause polyatomic molecules in a liquid
or gas rotate and/or vibrate internally. This would provide additional modes of
energy storage beyond the potential energies and translational kinetic energies
discussed in the preceding section:

ε = εpot + εtrans + εrot + εvib. (4.6)

The fact that, according to quantum mechanics, particles behave as waves puts
restrictions on the allowed energies, which one particularly evident in molecular
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rotation:

translation: px +
z

z z
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x x
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vibration:
2m 2

1
+
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Figure 4.6 A diatomic
gas molecule is like a little
dumbbell. It can store
translational kinetic
energy by moving in all
three dimensions. But it
can rotate around only
two axes. The rotational
inertia around the third
(the x-axis in this figure) is
so small, that the energy
of even the first excited
state is too high to reach.
Normally, it can store no
energy in vibrations,
because the excitations
require too much energy.

vibrations. Molecular binding puts each atom in a potential well that is a fraction
of an angstrom wide. Therefore, the wavelengths of the standing waves are short
(subsection 1B.8, Figure 1.9), corresponding to energies so high that vibrational
excitations are usually not possible at normal temperatures.3

Similar quantum effects also appear in molecular rotations. As we saw in sub-
section 1B.6, angular momentum L is quantized in terms of h. Kinetic energies
for rotations around any axis are inversely related to the rotational inertia I. For
rotations around the ith axis,

εrot = 1

2Ii
L2

i , where Li = (0, ±1, ±2 . . .) h (4.7)

(Because we can only know the exact value of Li for one axis at a
time, it is sometimes more convenient to use the total angular momentum,
L2 = l(l + 1) h2.)

The smaller the rotational inertia, the larger the energy of the first excited
rotational state. Sometimes the rotational inertia around one or more axes is so
small that excitation requires more energy than is available through molecular
collisions. So these particular rotational motions do not occur.

3 No energy can be extracted from the “zero point motion” (Section 1B.8), because there is no lower

state for the particle to fall into. We often measure energies relative to this level, calling this “the

state of zero energy.” Energy can only be stored by excitations into higher levels.
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C.2 Example -- the diatomic gas molecule

As a specific example, consider diatomic gas molecules, such as nitrogen or oxy-
gen. The translational kinetic energy is as given in equation 4.5 and, as discussed
above, the vibrational levels are too high to be accessible. The rotational kinetic
energy is particularly interesting, however, because the rotational inertia of a
diatomic molecule about the axis going through both atomic nuclei is very small,
and so the corresponding rotational excitations would require too much energy.
Around the other two molecular axes, however, the rotational inertia is much
larger, making these rotational states more accessible at ordinary temperatures.
With these considerations for the rotational modes, we can write the total energy
of a typical diatomic molecule as (Figure 4.6)

ε = εtrans + εrot = 1

2m
p2

x + 1

2m
p2

y + 1

2m
p2

z + 1

2I1
L2

1 + 1

2I2
L2

2 (4.8)

D Degrees of freedom

In all the examples above, the energies of individual particles are of the form

ε = u0 +
∑

i

biξ
2
i (4.9)

where the bi are constants (e.g., κ/2, 1/2m, 1/2I , etc.) and the ξi are position
or momentum coordinates (x, px , L1, etc.) Each of these biξ

2
i terms represents a

distinct way in which a particle can store energy, called a “degree of freedom.”
For example, each atom in a solid has six degrees of freedom, because there are
six biξ

2
i terms in equation 4.3. For the diatomic gas molecule of equation 4.8 there

are five such terms, so each diatomic gas molecule has five degrees of freedom.
In this book, we use the standard notation, whereby ν represents the number

of degrees of freedom per particle and N represents the number of particles in
the system:

degrees of freedom per particle = ν
(4.10)

degrees of freedom for a system of N particles = Nν.

E Equipartition

Consider the distribution of energy between the various degrees of freedom. In
collisions there is a tendency for energy to be transferred from the faster particle
to the slower one, so the energies even out. (Think of collisions on a pool table.)
From our studies of harmonic oscillators in introductory physics courses, we
know that the average potential and kinetic energies are the same. So terms like
κx2/2, and p2

x/2m carry equal energies when a average is taken. Finally, motion
in all three directions is equally likely, so the average kinetic or potential energies
in the x, y, and z directions must all be equal.
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Figure 4.7 Illustration of
the average energy per
particle ε̄ and the average
thermal energy per
particle, ε̄thermal, for
particles in potential
wells. The thermal energy
(wiggles and jiggles) is
measured relative to the
potential energy
reference level u0.

For these reasons, it should not be surprising that the average energy stored in
each degree of freedom is the same. This is known as the “equipartition theorem.”
We will prove it in a later chapter, where we will also show that if the energy
expression for a particular degree of freedom is of the form biξ

2
i (equation 4.9),

then the average energy stored in this degree of freedom is given by

ε = 1

2
kT (4.11)

where T is the temperature and k is Boltzmann’s constant:

k = 1.381 × 10−23 J/K = 8.63 × 10−5 eV/K.

Although we will soon give temperature a more formal definition, we can see
from 4.11 that it measures the average energy stored in each degree of freedom.

F Thermal energy

The “thermal energy” of a system is taken to be the energy stored in the wiggles
and jiggles of its particles and does not include the potential energy reference
level u0 (Figure 4.7).4 The energy of a single atom in a solid can be written as
(equation 4.3)

ε = u0 + 1

2
κx2 + 1

2
κy2 + 1

2
κz2 + 1

2m
p2

x + 1

2m
p2

y + 1

2m
p2

z .︸ ︷︷ ︸
εthermal

Since each degree of freedom carries an average energy of kT/2 (equation 4.11),
the average thermal energy of an atom in a solid is εthermal = 6kT/2.

4 In liquids the distinction between the reference level and thermal energy is more difficult. As we have

seen before, continually changing motions and orientations between neighboring molecules cause

rapidly changing potential energies. So in liquids the u0 reference level represents a time-averaged

mean feild value for a molecule’s potential energy and is sensitive to temperature.
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Generalizing this example, the average energy of a particle in any system can
be written as

ε = u0 + ν

2
kT, (4.12)

where ν is the number of degrees of freedom, and the internal energy of a system
of N such particles is

E = Nε = Nu0 + Nν

2
kT . (4.13)

The “thermal energy” Etherm of the system is the second term in 4.13:

Etherm = Nεtherm = Nν

2
kT .

you can see that the thermal energy is stored in the various degrees of freedom,
and is proportional to the temperature.

Notice that if we add energy �E to a system of N molecules then the rise in
temperature �T depends on the number of degrees of freedom per molecule, ν:

�E = N�u0 + Nν

2
k�T (4.14)

As we have seen, �u0 ≈ 0 for most solids and gases, so by measuring the
increase in temperature �T when energy �E is added, we can usually deter-
mine the number of degrees of freedom per molecule. For liquids, however, u0

increases with temperature and acts like additional degrees of freedom for energy
storage.

At phase transitions we may add large amounts of heat to a system, without
any change in temperature. Where does this added energy go? According to
equation 4.13, we can see two possibilities: since N and T are constant, only u0 and
ν can change. There is always a change in u0 during a phase transition, because
molecular arrangements in the new phase are different, resulting in different
potential energies. The number of degrees of freedom per molecule, ν might also
change, because the change of phase could change the constraints on the motions
of the individual molecules.

Summary of Chapter 4

Internal energy is the energy stored in the motions and interactions of the particles

entirely within a system. The interactions between neighboring particles gives rise

to potential energies. The reference level from which potential energies are

measured is given the symbol u0. In solids, the atoms are anchored in place by

electromagnetic interactions with their neighbors. They oscillate around their

equilibrium positions as tiny harmonic oscillators. The molecules in liquids are

fairly free to roam through the liquid. In most gases the potential energy is nearly

zero, owing to minimal interactions with the distant neighbors. If the interactions in
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a system are predominantly attractive then u0 is negative, and if they are

predominantly repulsive then u0 is positive.

In the detailed energy equation, each term that involves a position or momentum

coordinate represents a “degree of freedom.” Such terms normally have the form

bξ 2, where b is a constant and ξ is a coordinate. The fact that energies are quantized

may limit the number of degrees of freedom available to a particle because, for some

cases, even the first excited state might require too much energy.

On average, the internal energy of a system is distributed equally between all

degrees of freedom. The average energy per degree of freedom is proportional to the

temperature (equation 4.11):

ε = 1

2
kT,

where

k = 1.381 × 10−23 J/K (Boltzmann’s constant).

The thermal energy of a particle is carried in its various degrees of freedom and

is measured relative to the potential energy reference level u0.5 If there are ν degrees

of freedom per particle then the average energy per particle and the total internal

energy of a system of N such particles are given by (equations 4.12, 4.13)

ε = u0 + ν

2
kT

and

E = Nε = Nu0 + Nν

2
kT .

Problems

Sections A and B
1. Give examples of types of energy that would be part of your body’s internal

energy, and of types of energy that would not, unless the system were enlarged
to include your environment.

2. Consider the average potential energy of a water molecule in an ice crystal
and of one in the liquid state. Which is lower? How do you know?

3. (a) Show that the function f (x) = x3 + x2 − 2 has a local minimum at
x = 0. (Hint: Show that the first derivative is zero and that the second
derivative is positive at x = 0.)

(b) Expand this function in a Taylor series around the point x = 0, up to the
fourth-order term (the term in x4).

5 The situation in liquids is a little different, as discussed earlier. See also footnote 4.
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(c) If we keep terms only to order x2, what is the range in x for which our
error is less than 10%?

4. Repeat the above problem for the function f (x) = −e−x2
.

5. Expand the functions sin x, cos x, ln(1 + x), and ex to order x4 in Taylor
series expansions around the origin. Do you see any pattern in these expan-
sions that would allow you to continue the expansion to any order? Write out
each of these infinite series in closed form.(

E.g., sin x =
∞∑

n=0

(−1)n

(2n + 1)!
x2n+1.

)

6. We are going to make a very rough estimate of how much pressure must be
applied to a typical solid to compress it to the point where the potential energy
reference level u0 of the individual atoms becomes positive. Ordinarily, for
a typical solid, u0 is around −0.2 eV.
(a) If the interatomic spacings are typically 0.2 nm, how many atoms are

there per cubic meter?
(b) Roughly, how much work (in joules) must be done on one cubic meter

of this solid to raise u0 to zero? (Hint: You have to raise the potential
energy per atom by about 0.2 eV.)

(c) Work is equal to force times distance parallel to the force (Fdx) but, by
multiplying and dividing by the perpendicular surface area, this can be
changed into pressure times volume (−pdV). Because solids are elastic,
the change in volume is proportional to the change in applied pressure,
dV = −Cdp, and the constant C is typically 10−17m5/N. With this back-
ground, calculate the work done on a solid as the external pressure is
increased from 0 to some final value pf.

(d) With your answer to part (c) above, estimate the pressure that must be
exerted on a typical solid to compress it to the point where u0 becomes
positive (Figure 4.4, top right).

(e) What is a typical value for the variation of u0 with pressure, ∂u0/∂p, at
constant temperature and atmospheric pressure in a solid?

7. Consider the following three systems: (A) the water molecules in a cold soft
drink, (B) the copper atoms in a brass doorknob, and (C) the helium atoms
in a blimp (a small cigar-shaped airship). Below are listed expressions of the
energy for an atom in each system. In each case, fill in the blank with the
letter of the most appropriate system.

ε = u0 + 1

2
κx2 + 1

2
κy2 + 1

2
κz2 + 1

2m
p2

x + 1

2m
p2

y + 1

2m
p2

z

ε = 1

2m
p2

x + 1

2m
p2

y + 1

2m
p2

z

ε = u0 + 1

2m
p2

x + 1

2m
p2

y + 1

2m
p2

z
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Section C
8. We are going to estimate the vibrational energy of the first excited state for

a nitrogen molecule (N2). Each atom finds itself in a potential well due to
its interactions with the other atom. This potential well is roughly 0.02 nm
across.
(a) What are the wavelengths of the longest two standing waves that would

fit in this well?
(b) What momenta do these correspond to?
(c) Considering kinetic energy only, how much energy in eV would be

required to excite an atom from the ground state to the first excited
state? (The mass of a nitrogen atom is 2.34 × 10−26 kg.)

(d) To estimate the minimum temperature needed for excitations to occur,
we compare kT (where k = 1.38 × 10−23 J/K = 8.63 × 10−5 eV/K) with
the energy required to reach the first excited state. Roughly what is the
minimum temperature needed for vibrational excitations in nitrogen gas?

9. Consider the rotation of diatomic molecules around an axis that runs per-
pendicular through the midpoint of the line that joins the two atoms (see
Figure 4.6). The mass of a nitrogen atom is 2.34 × 10−26 kg, and the inter-
atomic separation in an N2 molecule is 1.10 × 10−10 m.
(a) What is the rotational inertia of an N2 molecule around this axis?

(I = ∑
mir2

i .)
(b) Find the energy in eV required to excite this molecule from the non-

rotating state to the first excited rotational state (i.e., from l = 0 to l = 1,
where L2 = l(l + 1) h2).

(c) What is the minimum temperature for rotational excitations in nitrogen?
See problem 8(d).

10. Repeat problem 9 for an oxygen molecule, O2, given that the mass of an
oxygen atom is 2.67 × 10−26 kg and the interatomic spacing is 1.21 ×
10−10 m.

11. Repeat problem 9 for a hydrogen molecule, given that the mass of a hydrogen
atom is 1.67 × 10−27 kg and the interatomic spacing is 7.41 × 10−11 m.

Section D
12. How many degrees of freedom has a sodium atom in a salt crystal?

13. Why do you suppose that, at high temperatures, a molecule of water vapor
(H2O) has three rotational degrees of freedom and a molecule of nitrogen
gas (N2) has only two?

14. Assuming that a conduction electron in a metal is free to roam anywhere
within the metal (not being constrained to any small region by a particular
well), how many degrees of freedom does it have?
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15. Consider the phase change for iron from solid to liquid forms.
(a) How many degrees of freedom does each iron atom have in the solid

state?
(b) After it has melted?
(c) Did the number of degrees of freedom of the conduction electrons

change?
(d) Did the number of degrees of freedom of the whole system increase or

decrease?
(e) On a microscopic scale, what happens to the energy put into the iron to

melt it?

16. The heat capacities of some diatomic gas molecules show that they have
three degrees of freedom at very low temperatures, five degrees of freedom
at intermediate temperatures, and seven degrees of freedom at very high
temperatures. How would you explain this?

Sections E and F
17. Estimate the molar heat capacity of a diatomic gas with five degrees of

freedom per molecule, by calculating how many joules of energy must be
added to raise the temperature by 1 ◦C. (Assume that the volume is constant,
so that only heat is added and no work is done.)

18. (a) Make an estimate of u0 (in eV) for a water molecule in the liquid state
at 100 ◦C. Assume that there are six degrees of freedom per molecule in
both the liquid and the vapor states and that 2260 kJ of energy per kg are
released when it condenses. Ignore any work done on the molecule due
to the change in volume.

(b) What is the average thermal energy per molecule?
(c) What is the average total energy per molecule for liquid water at 100 ◦C?

19. At 0 ◦C, a water molecule in both ice and liquid water has six degrees of
freedom. One mole of water has mass 18 grams and a latent heat of fusion
equal to 6025 joules per mole. Given this information, calculate the following
in units of eV:
(a) the average thermal energy per molecule in liquid water at 0 ◦C and in

ice at 0 ◦C,
(b) the amount of energy per molecule added in making the phase change,
(c) the change in the potential energy reference level u0 in going from the

solid to the liquid state.
Does the water’s thermal energy increase, decrease, or remain the same as
ice melts?

20. Using equipartition, calculate the root mean square value of the following
quantities in a gas at room temperature (295 K).
(a) The speed of a nitrogen molecule (m = 4.68 × 10−26 kg).



78 Introduction to thermodynamics and statistical mechanics

(b) The speed of a hydrogen molecule (m = 3.34 × 10−27 kg).
(c) The angular momentum of a diatomic oxygen molecule around one

of the two rotational axes, for which its moment of inertia is 1.95 ×
10−46 kg m2.

(d) If the axis in part (c) is the z-axis, what would be the root mean square
value of the quantum number lz?

21. What is the total thermal energy at room temperature (293 K) in a gram of
(a) lead, (b) dry air (78% N2, 21% O2, 1% Ar)?

22. You are climbing a mountain and you and your equipment weigh 700 N.
Suppose that of the food energy you use, one quarter goes into work (getting
you up the mountain) and three quarters into waste heat. Half the waste heat
goes into evaporating sweat. For every kilometer of elevation that you gain,
how many kilograms of food do you burn, and how many kilograms of water
do you lose? (Very roughly, food provides 4 × 106 J/kg, and the latent heat
of evaporation at the ambient temperature is about 2.5 × 106 J/kg.)
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Energy can be transferred between systems by the following three mechanisms

� the transfer of heat �Q;
� the transfer of work �W (i.e., one system does work on another);
� the transfer of particles �N .

These are called thermal, mechanical, and diffusive interactions, respectively (see
Figure 5.1). The first three sections of this chapter introduce these interactions
in a manner that is intuitive and qualitatively correct, although lacking in the
mathematical rigor of the chapters that follow.

A Heat transfer -- the thermal interaction

In the preceding chapter we learned that thermal energy gets distributed equally
among all available degrees of freedom, on average. So the energy of interacting
systems tends to flow from hot to cold until it is equipartitioned among all degrees
of freedom. The energy that is transferred due to such temperature differences is
called heat, and it travels via three distinct mechanisms: conduction, radiation,
and convection.

Conduction involves particle collisions (Figure 5.2a). On average, collisions
transfer energy from more energetic particles to less energetic ones. Energy flows
from hot to cold.

79
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A1

A2

A0

thermal mechanical diffusive

A1 A1

A0

A2

A0

A2

Figure 5.1 Pictorial representations of thermal, mechanical, and diffusive
interactions between systems. The combined system, A0 = A1 + A2, is completely
isolated from the rest of the Universe.

hot cold

(a)

electromagnetic waves

(b)

water waves

Figure 5.2 (a) Conduction: collisions transfer energy from particles with higher
kinetic energies to those with lower kinetic energies, on average. (b) Radiation,
illustrated by toy boats in a bathtub. As one is jiggled up and down, it sends out
waves which cause other toy boats to bob up and down as they pass by. Similarly,
accelerating electrical charges generate electromagnetic waves, which radiate
outward and transfer energy to other electrical charges that they encounter.

Energy transfer via radiation can be illustrated by toy boats in a tub.
(Figure 5.2b). If one is jiggled up and down, it sends out waves. Other toy boats
will oscillate up and down as these waves pass by. In a similar fashion (but at
much higher speeds), electromagnetic waves are generated by accelerating elec-
trical charges, and this energy is absorbed by other electrical charges that these
waves encounter.
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Owing to the thermal motions of particles, all objects both radiate energy
into their environment and absorb energy from their environment. Hotter objects
radiate energy more intensely due to the more energetic motion of their particles.
Therefore, there is a net transfer of radiated energy away from hotter objects
towards cooler ones.

Heat transfer by convection involves the movement of particles from one point
to another. A system gains the energy of particles that enter and loses the energy
of particles that leave. Examples of convection include all fluid motions. Within
solids, mobile conduction electrons also engage in heat transfer via convection.
(How does this differ from the diffusive interaction? We’ll soon find out.)

B Work -- the mechanical interaction

Another way to increase a system’s internal energy is to do work on it, dW =
F · ds; for example, if you compress a gas then its temperature rises. Some sort of
external force must cause a displacement of the system’s particles.1 It is customary
to use the symbol �W for work done by the system. Since forces come in equal
and opposite pairs,

work done by the system = −work done on the system. (5.1)

Whereas �Q represents heat added to the system, therefore increasing its internal
energy, �W represents work done by the system (i.e., against the external force F),
therefore decreasing the internal energy.2 Combining both types of interactions
we have, for the change in internal energy,

�E = �Q − �W (thermal and mechanical interactions) (5.2)

It is sometimes convenient to write the product of force times displacement
in other ways. Examples include:

dW = Fdx (an external force F pushing over a distance dx)

dW = pdV (an external pressure p forcing a change in volume dV )

dW = −B · dµµ (a magnetic field B causing a change in magnetic moment µµ)

dW = −E · dp (an electric field E causing a change in electric dipole moment p)

(5.3)

All have the same general form. We normally use pdV as the prototype. Any
change dV , dµµ, dp, etc., means that particles within the system have moved
because of the external force. Therefore work has been done and kinetic energies
have changed.

1 Why couldn’t a displacement due to an internal force cause a change in the internal energy?
2 This sign convention reflects early interest in the conversion of heat (input) to work (output) by

engines. The name “thermodynamics” and much of the early progress in the field can be traced to

these studies.
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Figure 5.3 (a) When a
particle collides elastically
with receding particles or
boundaries, it loses
kinetic energy. So, as a
system under pressure
expands the molecules
lose energy. (b)
Conversely, elastic
collisions with
approaching particles or
boundaries cause an
increase in kinetic energy.
So, as a system under
pressure is compressed
its molecules gain energy.

How can the internal energy of a system increase when the displacement of
particles due to external forces causes a decrease in their potential energies? The
answer is that potential energies relative to external forces are not part of the
internal energy of a system, but the increased kinetic energy is part of it.

If the system is expanding, there is a tendency for each particle to collide
with things moving outward, be those other particles or receding boundaries.
Collisions with receding objects cause a loss in kinetic energy (Figure 5.3a).
Conversely, when a system is being compressed, collisions with things moving
inward cause the kinetic energy to grow (Figure 5.3b). Therefore the expansion
of systems under pressure causes a decrease in internal energy, and compression
causes an increase. You may wish to speculate (homework) about systems under
tension rather than pressure.

Summary of Sections A and B

The transfer of energy between systems is accomplished in any or all of three ways:

the exchange of heat, work, and/or particles. These are referred to as thermal,

mechanical, and diffusive interactions, respectively. Heat tends to flow from hotter

to colder until temperatures are equalized.

The exchange of heat is accomplished through conduction, radiation, or

convection. Conduction involves collisions between particles. Radiation involves the

emission of electromagnetic waves by accelerating charges and the absorption of

this energy by charged particles that these waves encounter. Convection involves

energy transfer of particles as they enter or leave a system.

Work is achieved by the action of a force over a distance. Many different kinds of

force may act on a system, but the work done has the same general form -- the

product of an external force and the change in the conjugate internal coordinate. It is

customary to use pdV as the prototype for mechanical interactions.

�Q represents heat added to the system, and �W represents work done by the

system. Therefore (equation 5.2)

�E = �Q − �W (thermal and mechanical interactions).
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C Particle transfer -- the diffusive interaction

C.1 The chemical potential

We now examine the diffusive interaction. When particles enter a system they may
carry energy in different ways, two of which we have already encountered: heat
transfer and work. Any energy transfer that is not due to either of these mecha-
nisms is described by the “chemical potential” µ as follows. When �N particles
enter a system, the energy delivered via this third mechanism is given by

�E = µ�N (diffusive interaction only; no work or heat transfer). (5.4)

To understand this term, we first review the two types of energy transfer that
are excluded. As you well know, work is the product of force times distance.
Perhaps, though, you have not yet encountered a formal definition of heat. Two
important aspects of heat that will be introduced and quantified in future chapters
are the following.

(1) A heat input increases the number of states accessible to a system.3 (You might think

of this as allowing the particles more ways to wiggle and jiggle.)

(2) As we will learn in subsection 9B.1 (equation 9.6), there are three different ways in

which heat (�Q) may enter or leave a system. Only one of these is the familiar or

thermal interaction. For the other two mechanisms, it is not necessarily true that the

heat lost by one system is equal to that gained by the other (that is, dQ1 
= −dQ2).

When a particle goes from one system to another, it experiences a new envi-
ronment and new interactions (e.g., it might fall into a deeper potential well that
releases kinetic energy to the new system). This will change the number of states
accessible to the system, so heat (�Q) will be gained or lost. Note that this is
not due to temperature differences between the two system, so it is not part of the
thermal interaction. Rather it is due to the new environment that the transferred
particle experiences. Also note that if the environments of the two systems dif-
fer, then the heat lost by one system will not be the same as that gained by the
other.

To quantify this idea, consider the transfer of �N particles from system A2

to system A1 (Figure 5.1, on the right). For simplicity, we exclude thermal and
mechanical interactions by assuming either that both systems are insulated and
rigid or both are at the same temperature and pressure. Combining equations 5.2
and 5.4 for the change in internal energy of the two, we have

�E1 = �Q1 + µ1�N (�N particles enter region 1),

�E2 = �Q2 − µ2�N (�N particles leave region 2).

3 We will find that the heat entering a system is directly proportional to the increase in entropy, which

is a measure of the number of states that are accessible to the system.
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Adding the two together and using energy conservation (�E1 + �E2 = 0), we
have

0 = (�Q1 + �Q2)︸ ︷︷ ︸
�Q0

+(µ1 − µ2)�N︸ ︷︷ ︸
energy transferred by

the diffusive interaction

.

This shows how the energy transferred by the diffusive interaction relates to the
net amount of heat �Q0 that is released or absorbed.

Suppose, for example, that µ1 < µ2, so that the particles’ chemical potential
decreases as they enter their new environment. The above equation tells us that
heat will be released (�Q0 > 0). That is, a decrease in chemical potential cor-
responds to the release of heat. As we saw above, the release of heat increases
the number of accessible states, and this increase may happen in either or both
of two distinct ways (see equation 1.4):

(1) an increase in the accessible volume in momentum space, Vp;

(2) an increase in the accessible volume in coordinate space, Vr .

The first happens when particles entering a new system fall into deeper poten-
tial wells, owing to their interactions in the new environment. The loss in potential
energy produces a corresponding gain in kinetic energy, hence a larger accessible
volume Vp in momentum space. For example, think of the heat released when
concentrated sulfuric acid is mixed with water, or think of what happens to the
individual atoms when hydrocarbons are burned.

The second happens when particles move into regions where they have more
room and hence a larger accessible volume Vr in coordinate space. For example,
they might move to regions of lower concentration or into an evacuated chamber
(“free expansion”).

C.2 Particle distributions

In our macroscopic world, systems seek configurations of lower potential energy.
Rocks fall down (Figure 5.4). A boulder that has fallen to the valley floor would
never jump back out. Things are different in the microscopic world, however, due
to the thermal motions of the particles. The smaller the particle, the more violent

Figure 5.4 When forces
between particles are
attractive, a new particle
entering the system falls
into a potential well, like a
boulder falling off a cliff.
And just as the boulder’s
kinetic energy is
transferred to the dust
and debris on the valley
floor, so is the kinetic
energy of the incoming
particle transferred to
others.
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the motion. Particles are continually jumping back out of wells into which they
have fallen.

These thermal motions cause particles to flow towards regions of lower con-
centrations, simply because there are more particles in the region of higher con-
centration ready to move out than there are particles out in the region of lower
concentration ready to move back in.

Consequently, when a system is in equilibrium, the two considerations that
govern the particle distribution are that they tend to move towards regions of

� lower potential energy
� lower concentration

As you might infer from the preceding section, the chemical potential µ of equa-
tion 5.4 is the appropriate measure of these two tendencies. Although the details
of this measure will be developed in Chapter 14, for now we can think of it as
follows:

µ depends on: 1. depth of the potential well and 2. particle concentration. (5.5)

Deeper potential wells and smaller concentrations mean smaller (i.e., more neg-
ative) values for the chemical potential.

Because particles seek configurations that minimize these two factors, the
chemical potential governs diffusive interactions in the same way that temperature
and pressure govern thermal and mechanical interactions, respectively. Particles
flow towards regions of lower chemical potential, just as heat flows toward regions
of lower temperature, and movable boundaries move toward regions of lower
pressure. The underlying principle for all these interactions is the “second law of
thermodynamics” (Chapter 7), whose consequences are so familiar that we call
them “common sense.”

The configuration of lowest chemical potential usually involves a compromise
in trying to minimize both potential energy and particle concentration; a gain
in one area may be offset by a reduction in another. So, in the microscopic
world, we may find some particles in regions of higher potential energy, albeit
in correspondingly lower concentrations. An example is the water vapor in our
atmosphere. The potential energy of a water molecule in the liquid phase is much
lower because of the strong interactions between closely neighboring molecules:

u0, liquid ≈ −0.4 eV,

u0,vapor ≈ 0.

If water sought the configuration of lowest potential energy, all water molecules
would be in the ocean. None would be in the atmosphere.

Now consider the evaporation of water into dry air. Initially µvapor < µliquid,
owing to the very small concentration of water molecules in the vapor phase (see
equation 5.5). The molecules diffuse toward the lower chemical potential -- that
is, the water evaporates. But as the concentration in the vapor phase increases, its
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Figure 5.5 When a salt ion or molecule enters a solution, it falls into a potential well
owing to the electrostatic attraction between it and the oppositely charged parts of
neighboring water molecules. As more salt is added, the potential well’s depth
decreases, because there are fewer remaining free water molecules with which it
can interact. Furthermore, the concentration of the dissolved salt increases. Both the
raising of the potential well and the rising concentration cause the chemical
potential of the dissolved salt to rise, eventually reaching that in the crystalline salt.
At this point the solution is saturated and there will be no further net transfer of salts
between the two.

chemical potential rises accordingly. When µvapor rises to the point where it equals
µliquid, diffusion in both directions is the same and so the net evaporation stops.
For molecules leaving the liquid phase, the decrease in particle concentration is
no longer enough to offset the increase in potential energy. The air has become
“saturated,” and the two phases are in “diffusive equilibrium.”

A similar thing happens as a crystalline salt dissolves in water, as illustrated
in Figure 5.5. Other examples are the electronic devices that rely on the diffusion
of electrons across p-n junctions into regions of lower concentration and higher
potential energy. If there were no diffusion the devices would not work.

We do not see this same behavior in the macroscopic world, where thermal
motions are minuscule. For large objects, potential energies rule and thermal
motions are irrelevant. But things are different in the microscopic world, owing
to the random thermal motion of the atoms and molecules. This motion is the
reason for diffusion -- why gases expand to fill their containers, why not all water
molecules are in the ocean, etc. It has a firm statistical basis, which we will
quantify in later chapters.

C.3 Particle transfer and changes in temperature

When particles fall into deeper potential wells, the potential energy lost is con-
verted into increased thermal energy and the temperature rises (Figure 5.6). This
happens when water condenses or a fire burns. Conversely, when particles dif-
fuse into regions of higher potential energy, the thermal energy decreases and the
temperature falls.
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Figure 5.6 (a) Water molecules, which are electrically polarized, attract each other
strongly. (b) So a water molecule falls into a potential well and releases thermal
energy as it joins the liquid state. (c) In ice, reduced thermal motion allows the water
molecules to maintain arrangements that reduce their potential energy still further
by keeping like charges close, so additional thermal energy is released as water
freezes.

Summary of Section C

A system’s chemical potential µ measures the average change in internal energy per

entering particle that is not due to the transfer of heat or work. For �N entering

particles (equation 5.4),

�E = µ�N (diffusive interaction only − no work or heat transfer).

There are two sources for this energy: changes in potential energy due to particle

interactions, and changes in particle concentrations (equation 5.5):

µ depends on: 1. depth of potential well and 2. particle concentration.

We will quantify these two aspects in a later chapter. Particles seek regions of lower

chemical potential since interparticle forces favor configurations of lower

potential energy and thermal motion tends to carry particles towards lower

concentrations. Consequently, the chemical potential governs diffusive interactions

in the same way that temperature and pressure govern thermal and mechanical

interactions:

� thermal interaction -- heat flows towards lower temperature;
� mechanical interaction -- boundaries move toward lower pressure;
� diffusive interaction -- particles move toward lower chemical potential.

The configuration of lowest chemical potential may involve a compromise

between potential energy and particle concentration. A drop in one may be sufficient

to offset a gain in the other. When particles move into regions of different potential

energy, thermal energy is absorbed or released and temperatures change accordingly.
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Figure 5.7 Illustration of
the three kinds of
processes through which
the internal energy E of a
system may be increased:
transferring heat energy
dQ, doing work on the
system −dW, or
transferring particles
µdN. Altogether, we can
write the change in
internal energy of a
system as dE = dQ−
dW + µdN, which is the
first law of
thermodynamics. D The first law of thermodynamics

In the preceding sections we examined each of the three ways by which the
internal energy of a system may be changed (Figure 5.7):

� by transferring heat in or out of the system;
� by having work done on or by the system;
� by adding or removing particles from the system.

These are expressed in results 5.2 and 5.4, which together constitute the first law
of thermodynamics:

First law of thermodynamics

The change in internal energy of a system is given by

dE = dQ − dW + µ dN . (5.6)

The dW term is preceded by a negative sign, because dW is the work done by the
system. If more than one kind of work is being done (e.g., equation 5.3) then dW
must be replaced by a sum over different kinds of work dW j . Similarly, if there
are several kinds of particles in the system then the last term becomes

∑
i µi dNi ,

where the sum is over the different types of particle:

dE = dQ −
∑

j

dW j +
∑

i

µi dNi . (5.7)

E Exact and inexact differentials

The differentials appearing in the first law, (5.6), are of two types, “exact” and
“inexact.” An exact differential is the differential of a well-defined function, but
an inexact differential is not. This difference has several implications, which we
now explore.
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Figure 5.8 (a) When
integrating a differential
between initial and final
points, the result is
independent of the path
(paths 1, 2, and 3 are
shown) if the differential
is exact, but not if it isn’t.
(b) Two of the infinite
number of possible paths
for a system to follow
between given initial and
final values of the
pressure and volume.

E.1 The general case

Consider the change in value of a given function, F = F(x, y), as we move along
a path from an initial point (xi , yi ) to a final point (x f , y f ). The total change �F
is the integral of the exact differential dF :

�F =
∫ f

i
dF = F(x f , y f ) − F(xi , yi ).

It is uniquely determined by the two endpoints, (x f , y f ) and (xi , yi ), and does
not depend on the route taken (Figure 5.8). Examples would include the exact
differentials �E, �N, �V , �p. By contrast, the integral of an inexact differential
does depend on the path taken.

The differential of a function is given by

dF = ∂ F

∂x
dx + ∂ F

∂y
dy (5.8)

Therefore, one way to determine whether a differential

d = g(x, y)dx + h(x, y)dy (5.9)

is exact is to see whether we can find some function F(x, y) such that

∂ F

∂x
= g(x, y) and

∂ F

∂y
= h(x, y).

If we can, the differential is exact, and if we can’t, it is inexact.
Alternatively, we can use the identity

∂2 F

∂y∂x
= ∂2 F

∂x∂y

Combining this with equations 5.8 and 5.9, we can see that for exact differentials

∂g

∂y
= ∂h

∂x
. (5.10)



90 Introduction to thermodynamics and statistical mechanics

Example 5.1 Determine whether d = 2xy dx + x2 dy is an exact differential.
We can see that this is indeed an exact differential of the function

F = x2 y + constant,

because
∂ F

∂x
= 2xy and

∂ F

∂y
= x2.

Or we can use equation 5.10. For this example g = 2xy and h = x2, so

∂g

∂y
= 2x and

∂h

∂x
= 2x .

The two are the same, so the differential is exact.

E.2 Applications to physical systems

In real physical systems, examples of exact differentials would include changes
in particle number, in internal, energy, or in volume (�N, �E, �V ):

�N = N f − Ni , �E = E f − Ei , �V = V f − Vi .

These are all properties of the system that can be measured at any time. Changes
can be determined from initial and final values alone without knowing what
happened in between. This is not true, however, for heat or work. Although we
can determine changes in internal energy during a process from its initial and
final values alone, we would not know how much of this change was caused by
heat entering the system and how much by work done on the system, unless we
knew the particular path followed by the process.

For example, suppose that we measure the internal energy of an iron bar and
then leave the room while a friend altered its energy. When we return, it might
be hotter, and from the increased temperature we can determine the increase in
internal energy, �E. But we will not be able to tell whether that change was made
by adding heat to the bar, or by doing work on it, such as by hitting it with a
hammer. That is, we would not know �Q or �W .

If we find the bar squeezed in a clamp, we might suspect that work had been
done on it (i.e., the clamp squeezed it). However, it could be that the bar was
slipped into the clamp when cooled and contracted, then was reheated, expanding
and becoming stuck against the clamp, without the clamp having moved at all.
So our guess would be wrong.

In summary, changes in internal energy �E, volume �V , and number of
particles �N during a process can be determined from initial and final values
alone, independently of the particular details of the process (i.e., the path taken).
This makes dE, dV, dN exact differentials. By contrast, the heat added, �Q, or
work done, �W , do depend on the details of how the process is carried out. So
dQ and dW are inexact differentials.
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Notice that we can write the inexact differential dW in terms of an exact
differential dV : dW = pdV . In Chapter 8 we will find a way of doing the same
for dQ.

F Dependent and independent variables

In thermodynamics we often have many different system variables, such as inter-
nal energy, temperature, pressure, volume, chemical potential, number of parti-
cles, entropy, and others, of which only two or three are independent. This could
cause much confusion, particularly when the partial derivatives are involved.

For example, consider some function F that is a function of many different
variables q, r, s, t, u, v, w, x, y, . . . , only two of which are independent. To
find the partial derivative with respect to one independent variable, for exam-
ple ∂F/∂u, we must hold the other independent variable constant. But how
will we indicate which of the various possible “other” variables is the one held
constant?

There are two customary ways of doing this. The notations

∂ F(u, x)

∂u
or

(
∂ F

∂u

)
x

are the normal ways of indicating that there are only two independent variables
involved and that x is the one held constant while the partial derivative with
respect to u is taken. By extension, the notations

∂ F(w, x, y)

∂w
or

(
∂ F

∂w

)
x,y

indicate there are three independent variables and that x and y are held constant
while the partial derivative with respect to w is taken. To take the desired partial
derivative, the function must first be written entirely in terms of the chosen set of
independent variables.

Example 5.2 Consider a function of three variables, F(x, y, z), only two of which
are independent. The three are interrelated by y = x2z. Given that

F(x, y, z) = x + xyz

find (∂F/∂x)y .

First, we must write the function in terms of the chosen independent variables,
x and y. Writing z in terms of x and y gives

z = y

x2
, so F(x, y) = x + xy

(
y

x2

)
= x + y2

x
.

Now that F is written in terms of x and y we can take the appropriate partial
derivative: (

∂ F

∂x

)
y

= 1 − y2

x2
.
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Summary of Sections D--F

The change in internal energy for a system undergoing thermal, mechanical, and/or

diffusive interactions is given by the first law of thermodynamics (equation 5.6):

dE = dQ − dW + µdN (first law).

A differential d = g(x, y)dx + h(x, y)dy is exact if it meets any of these criteria:

� the integral from (xi , yi ) to (x f , y f ) is independent of the path taken for all values of initial

and final points;
� there exists some function F(x, y) such that ∂F/∂x = g and ∂F/∂y = h;
� ∂g/∂y = ∂h/∂x.

In the first law, the change in internal energy dE is an exact differential, as is the

change in volume dV and the change in the number of particles dN. However, the

heat added dQ and the work done by the system dW are not exact differentials. One

consequence of this is that when the internal energy of a system is changed by a finite

measured amount �E there is no way of knowing how much of that energy entered

as heat �Q and how much as work done on the system, −�W , without knowing the

particular thermodynamic path followed in going from the initial to the final

state.

For partial derivatives, we must indicate which variables are being held constant,

and we must write all other variables in terms of the chosen independent variables

before the derivative can be taken.

Problems

Sections A and B
1. Consider a small hot rock at 390 K inside a building with cold air and cold

walls at 273 K. Air is a very poor conductor of heat, so the bulk of the energy
transfer is radiative.
(a) Are the molecules of the walls and air sending out electromagnetic

waves?
(b) Since the cooler system is much larger, doesn’t it radiate much more

energy altogether than the rock?
(c) Considering your answer to part (b), why is there a net flow of energy

from the rock to the air, rather than vice versa?

2. Consider a system that is not under pressure but whose volume decreases as
a container wall moves inward.
(a) Is any work done on the system? Why or why not?
(b) Explain from a microscopic point of view why the internal energy is not

increased in this case. (Hint: If it is not under pressure, are there any
molecules colliding with the container walls?)
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3. Consider a system under tension, such as a stretched rubber band, or a
stretched steel bar. Now suppose that you let it contract somewhat.
(a) Does its internal energy increase or decrease?
(b) If its temperature increases, how might you explain this? (Hint: potential

wells, such as those in Figure 4.4, might be useful.)

4. Calculate the work done by a gram of water when it vaporizes at atmospheric
pressure. Use the fact that a mole of water vapor at 100 ◦C and atmospheric
pressure occupies a volume of 30.6 liters. How does this work compare with
the latent heat of vaporization, which is 2260 joules per gram?

5. When the gasoline explodes in an automobile cylinder, the temperature is
about 2000 K, the pressure is about 8 × 105 Pa, and the volume is about
100 cm3. The piston has cross sectional area 80 cm2. The gas then expands
adiabatically (i.e., no heat leaves or enters the cylinder during the process) as
the piston is pushed downward, until its volume increases by a factor of 10.
For adiabatic expansion of the gas, pV γ = constant, where γ = 1.4.

(a) How much work is done by this gas as it pushes the piston downward?
(b) Assuming it behaves as an ideal gas (pV/T = constant), what is the final

temperature of the gas?

6. A certain insulating material has 5 × 1022 atoms, each having six degrees
of freedom. It initially occupies a volume of 10−6 m3 at a pressure of 105

Pa. The pressure and volume are related by p(V − V0) = constant, where
V0 = 0.94 × 10−6 m3.
(a) If the pressure on the system is increased ten fold, how much work is

done by the system?
(b) Suppose that the potential energy per particle u0 remains constant, and

that the pressure increases sufficiently quickly that no heat enters or
leaves the system during the process, i.e., the process is adiabatic. By
how much does the temperature of the insulator rise?

Section C
7. Is the potential energy reference level u0 for an H2SO4 (sulfuric acid)

molecule entering fresh water positive or negative? (The temperature rises.)
For the molecules entering the solution, is the change in chemical potential
positive or negative?

8. The boiling point of water is considerably higher than the boiling point for
other liquids composed of light molecules such as NH3 or CH4. It is even
much higher than the boiling point of molecules nearly two or three times as
massive, such as N2, O2, or CO2. Why do you suppose this is?

9. We are going to examine mechanisms for the cold packs that are used for
athletic injuries, where two chemicals are mixed and the resulting temperature
of the pack drops remarkably.
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(a) Suppose that when you mix two chemicals, some of the molecules dis-
sociate, giving the system more degrees of freedom without changing
the total energy or the system’s overall potential energy reference level,
Nu0. What would happen to the temperature, and why?

(b) What would happen to the temperature if the number of degrees of free-
dom didn’t change, but the overall potential energy reference level, Nu0,
rose as a result of the mixing?

10. Initially, system B has 2 × 1025 particles, each having u0,B = −0.35 eV
and five degrees of freedom. System A has 1026 particles each having
u0,A = −0.40 eV and three degrees of freedom. After these two systems
are combined, the situation for particles of system A doesn’t change but the
particles of system B have u0,B ′ = −0.25 eV and three degrees of freedom
each. If the two systems are both at temperature 290 K before they are mixed,
what will be the temperature of the combined system after mixing?

11. A certain material vaporizes from the liquid phase at 700 K. In both phases,
the molecules have three degrees of freedom. If u0 in the liquid phase is
−0.12 eV, what is the latent heat of vaporization in joules per mole?

12. Repeat the above problem for the case where the molecules have three degrees
of freedom in the liquid phase but five in the gas phase.

13. Consider a solid that sublimes (goes from solid to gas) at 300 K. In the solid
phase, the molecules have six degrees of freedom and u0 = −0.15 eV, and
in the gas phase, they have three degrees of freedom (and u0 = 0, of course).
What is the latent heat of sublimation in joules per mole?

14. Consider a system of three-dimensional harmonic oscillators, for which the
energy of each is given by

ε = u0 + (1/2)κ(x2 + y2 + z2) + (1/2m)
(

p2
x + p2

y + p2
z

)
.

Suppose that their mutual interactions change in such a way that u0 drops by
0.012 eV, without any energy entering or leaving the system as a whole. For
any one oscillator, find the average change in (a) thermal energy, (b) kinetic
energy, (c) Potential energy.

15. Estimate the temperature inside a thermonuclear explosion in which deu-
terium nuclei fuse in pairs to form helium nuclei. Assume that each nucleus
has three degrees of freedom and that 10% of the deuterium fuses into helium.
Assume that the average drop in u0 upon fusing is 1 MeV per nucleon.

16. Consider the burning of carbon in oxygen. Estimate the value of the change in
potential energy reference levels for the molecular ingredients, u0(CO2) −
[u0(C) + u0(O2)], assuming that the carbon and oxygen start out at room
temperature (295 K) and that the temperature of the flame is 3000 K. Assume
that the carbon (graphite) atoms initially have six degrees of freedom, and
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that both oxygen and carbon dioxide molecules have five degrees of freedom
apiece.

17. The electrical polarization of the water molecule makes water an exceptional
material in many ways. The interactions between neighboring molecules
are extremely strong, yielding very deep potential wells. Furthermore, these
interactions (and hence u0) change noticeably with temperature. To demon-
strate this, calculate the number of degrees of freedom per molecule that
would be needed to give the observed specific heat, 4186 J/(kg K) if u0 does
not change.

18. Suppose that 0.15 moles of some acid are added to a liter of water; both are
initially at room temperature. The addition raises the temperature by 0.1 K.
How much deeper is the potential well of the acid molecules when in water
than when in the concentrated acid? (The heat capacity of a liter of water is
4186 J/K .)

19. From a molecular point of view, why is u0 for:
(a) liquid water less (more negative) than that of water vapor?
(b) ice less than that of liquid water?
(c) salt in water less than that of salt in oil?

20. The latent heat of vaporization for a certain acid at room temperature is
19260 J/mole. The molecules have six degrees of freedom in both phases.
The work done on it due to its change in volume during condensation is
p�V ≈ nRT .
(a) Assuming that self-interactions (and hence u0) are negligible in the vapor

state, use the above information to calculate u0 for this acid (in eV) in
the liquid state at room temperature.

(b) When 10−2 mole of this acid in the liquid form is added to one liter of
water, both at room temperature, the temperature of the water rises by
0.1 ◦C. What is the depth of the potential well for this acid in water?

Section D
21. One mole of air at 0 ◦C and atmospheric pressure (1.013 × 105 Pa) occupies

22.4 liters of space. Suppose we compress it by 0.2 liter (a small enough
amount that we can assume the pressure remains constant.)
(a) How much work have we done?
(b) How many joules of thermal energy would we have to remove for the

internal energy to remain unchanged?
(c) If we did both of these, but found that the temperature decreased slightly,

what would we conclude about the behavior of u0 as molecules get closer
together?

22. A magnetic moment is induced in most materials when they are placed in
a magnetic field. For aluminum, this induced magnetic moment is directly
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proportional to the applied field and aligned parallel to it, µµ = cB, where the
constant of proportionality c is equal to 1830 A2m3/N for a 1 m3 sample. This
sample of aluminum is placed in an external magnetic field, whose strength
is increased from 0 T to 1.3 T; 1 T = 1 N/(A m).
(a) How much work is done on the sample?
(b) Since this work is done on the sample, the sample’s internal energy

increases. But the potential energies of the atomic magnets decrease as
they align with the imposed external field. How can the system’s internal
energy increase if the sample’s potential energy decreases? (Hint: Think
of what the internal energy does and does not include.)

23. A gas with 1027 degrees of freedom is under a pressure of 150 atm. It is
allowed to expand by 0.01 m3 without any heat or particles being added or
removed in the process. Calculate (a) the work done by the gas, (b) the change
in temperature. (Hint: Find the change in internal energy first.)

24. As liquid water is compressed at constant temperature, its pressure increases
according to the formula: p = [1 + 2.5 × 104(1 − V/V0)] atm, where V0 is
its volume under atmospheric pressure, 1.013 × 105 Pa.
(a) If some water has a volume of 1 liter at atmospheric pressure, what

will be its volume at the bottom of the ocean, where the pressure is
500 atm?

(b) How much work is done by a liter of water that is brought to the surface
from the ocean bottom? (Hint: The pressure is not constant, so you will
have to integrate pdV .)

(c) Knowing that to change the temperature of water by 1 ◦C requires a
change in internal energy of 4186 J per kg, calculate the change in
temperature of the water sample brought up from the bottom of the
ocean. Assume that it is closed and insulated, so that no heat or particles
enter or leave the sample as it is raised.

Section E
25. Test each of the following differentials to see whether they are exact, using

two methods for each:
(a) −y sin xdx + cos xdy,
(b) ydx + xdy,
(c) yx3ex dx + x3ex dy,
(d) (1 + x)yex dx + xex dy,
(e) 4x3 y−2dx − 2x4 y−3dy.

26. State which of the following differentials are exact:
(a) 3x2 y2dx + 2x3 ydy,
(b) 3x2eydx + 2x3eydy,
(c) [1 + ln(x)] sin ydx + x ln x cos ydy,
(d) e2x2

[4xy ln(y)] dx + e2x2
[ln(y) + 1] dy.
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27. Consider the path integral of the exact differential dF = 2xydx + x2dy. Inte-
grate this from (1, 1) to (4, 3) along both the paths 1 and 3 in Figure 5.8a.
Are the two results the same?

28. Consider the path integral of the differential dG = 3xydx + x2dy. Integrate
this from (1, 1) to (4, 3) along paths 1 and 3 of Figure 5.8a. Are the two
results the same? Is this differential exact?

29. The work done by a system can be written as dW = pdV , where p is the
pressure and dV the change in volume. Compute the work done by a system
as its pressure and volume change from the initial values pi , Vi to the final
values p f , V f , by evaluating the integral �W = ∫

pdV :
(a) along path 1 in Figure 5.8b.
(b) Along path 2 in Figure 5.8b.
(c) Does the amount of work done depend on the path taken?

30. Find the integral of the differential dF = y2dx + xdy from point (2, 2) to
point (6, 5):
(a) along a path that first goes straight from (2, 2) to (6, 2) and then straight

from (6, 2) to (6,5),
(b) along a path that first goes straight from (2, 2) to (2, 5) and then straight

from (2, 5) to (6, 5),
(c) along a path that goes along the diagonal line y = (3/4)x + (1/2) from

(2, 2) to (6, 5).

31. Repeat the above problem for the function dG = y2dx + 2xydy.

Section F
32. Suppose that w = xy and z = x2/y. Express:

(a) z as a function z(w, y) of w and y,
(b) z as a function z(w, x) of w and x,
(c) w as a function w(z, y) of z and y,
(d) w as a function w(z, x) of z and x,
(e) x as a function x(y, z) of y and z.

33. For the problem above, evaluate the following partial derivatives:
(a) (∂z/∂w)y , (b) (∂w/∂y)z , (c) (∂x/∂y)z , (d) (∂y/∂w)z .

34. Consider the variables x, y, z, u, v , where

x(u, v) = u2v, y(u, v) = u2 + 2v2, z(x, y) = xy.

Any of these five variables can be expressed as a function of any other two.
Find the correct expression for:
(a) y as a function y(x, v) of x and v,
(b) z as a function z(u, v) of u and v,
(c) v as a function v(y, u) of y and u,
(d) (∂y/∂x)v , (e) (∂x/∂u)v , (f) (∂x/∂u)y .
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35. Given that x = y2z − w and w = x + y2, what is (∂w/∂y)z?

36. Given that w = xey and x = y2z, what is (∂w/∂z)y?

37. Consider the function f (q, r, s, t) = qst − er , where r = st and s = q2r .
What is (∂f /∂t)s?

38. For a certain ideal gas, the variables E, p, V , N, T are interrelated by the
following equations: E = (3/2)NkT, pV = NkT, N = constant. What is
(∂ E/∂p)V ?
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We now begin our study of the possible configurations or states for macroscopic
systems. Because the volume of a quantum state in six-dimensional phase space
is extremely small, a very large number of such states are available to the particles
of most systems.

One mole of material contains roughly 1024 atoms, each of which could be
in a large number of different quantum states. Consequently, the total number
of possible states for any macroscopic system is huge. Numbers like 101024

are
typical. They are probably much larger than any numbers you have encountered
before (Table 6.1).

When energy is added to a system it gives the particles access to additional
states of higher energy. Even a small increase in the number of states per particle
results in a very large increase in the number of states for the system as a whole.
As an example, consider a system of coins, each of which has two possible
states: heads or tails. A system of N such distinguishable coins has 2 × 2 × 2 ×
2 × · · · = 2N different possible heads--tails configurations. If the number of states
per coin were increased from 2 to 3 (three-sided coins?), the number of possible
states for the system would increase from 2N to 3N , an increase by a factor
(3/2)N . If N = 1024, this would be a factor of (3/2)1024 ≈ 101023

. For macroscopic
systems, any small increase in the number of states per particle results in a huge
increase in the number of states for the system.

101
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Table 6.1. Some large numbers

grains of sand in Waikiki beach 1018

age of Universe in microseconds 1024

water molecules in Atlantic Ocean 1046

atoms in Earth 1050

volume of Universe in cubic microns 1097

states for molecules in a glass of water 101,000,000,000,000,000,000,000,000

Figure 6.1 The addition of energy or particles usually occurs in a small localized
region of a system, such as along a boundary. The system is not in equilibrium until
interactions among particles have provided the opportunity for the added energy
and particles to be anywhere, so that all possible distributions are equally likely. The
time required for this to happen is the relaxation time. From that point on, the
probabilities for the various possible configurations remain the same.

A Equilibrium

An isolated system is said to be in equilibrium when the probabilities for the
various possible configurations of its elements do not vary with time. For example,
suppose that we release ammonia molecules at the front of a room. Initially, the
states near the point of release have relatively high probabilities of containing
these molecules, whereas those at the rear of the room have no chance at all.
But the molecules migrate and the probabilities change until the molecules are
equally likely to be found anywhere in the room. At this point the probabilities
stop changing and the system is in equilibrium.

Similarly, energy transfer through heating or compression (Figure 6.1) may
initially affect only particles in one local region. In time, however, interactions
among the particles distribute this energy throughout the system until all possible
distributions are equally probable. From this point on, the system is in equilibrium.

The characteristic time needed for a perturbed system to regain equilibrium is
called the “relaxation time.” When applying statistical tools to processes involv-
ing macroscopic systems, it is helpful if the systems are near equilibrium. This
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requires that the transfer of heat, work, or particles must proceed at a rate that
is slow compared with the relaxation time for that particular process. When this
happens, we say the process is “quasistatic.”

Summary of Section A

The number of quantum states that are accessible to physical systems is usually

extremely large, but finite. When the number of states accessible to the individual

elements is increased even very slightly, the number of states accessible to the

system as a whole increases immensely.

An isolated system is said to be in equilibrium when the probabilities for it to be

in the various accessible states do not vary with time. If a system is perturbed, the

characteristic time required for it to come into equilibrium is called the relaxation

time for that process. When interactions between systems proceed slowly enough

that the systems are always near equilibrium, the process is called quasistatic.

B The fundamental postulate

The tools for the statistical analysis of the equilibrium behaviors of large systems
are based on one single, very important fundamental postulate.

Fundamental postulate

An isolated system in equilibrium is equally likely to be in any of its accessible

states, each of which is defined by a particular configuration of the system’s

elements.

This postulate seems quite reasonable, but this in itself does not justify its
adoption. Rather, we must validate it by comparing the results of experiments
with predictions based on the postulate. This has been done for a huge number
of systems and processes, and we find that the predictions are correct every time.

If the number of states accessible to the entire system is given by �, and all
are equally probable, then the probability for the system to be in any one of them
must be (Figure 6.2)

Pany one state = 1/�, (6.1)

and if a subset has �i states then the probability for the system to be in this subset
is

Psubset i = �i

�
. (6.2)

Example 6.1 Consider the orientations of three unconstrained and distinguish-
able spin-1/2 particles. What is the probability that two are spin up and one spin
down at any instant?
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Ω

Figure 6.2 (Left) A representation of the � states that are available to a system. If all
are equally probable then the probability that the system is in any one state is
P = 1/�, and the probability that it is in a subset containing �i of these states is
Pi = �i/�. (Right) If the magnitude of a particle’s momentum is constrained to be
less than p0, what is the probability that its momentum is less than p0/10?

Of the eight possible spin configurations for the system,

↑↑↑ ↑↑↓ ↑↓↑ ↓↑↑ ↑↓↓ ↓↑↓ ↓↓↑ ↓↓↓

the second, third, and fourth comprise the subset “two up and one down”. There-
fore, the probability for this particular configuration is

P2 up and 1 down = 3
8 .

Example 6.2 Consider electrons in a plasma whose momenta are constrained to
have magnitudes less than some maximum value p0. What is the probability that
the momentum of any particular electron is less than one tenth this maximum
value (Figure 6.2)?

The number of accessible states is proportional to p3 (equation 1.4):

� = Vr Vp

h3
= Vr (4πp3/3)

h3
∝ p3.

Therefore, the probability that the electron has momentum less than p0/10 is

Pi = �i

�
= p3

p3
0

=
(

p0/10

p0

)3

= 10−3.

C The spacing of states

It is sometimes convenient to identify the state of a small system by its energy.
If several different states have the same energy, we say that the energy level is
“degenerate.”

For large systems, the degeneracy of each energy level is huge. In the home-
work you will be able to show that there are about 101027

different ways of
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arranging the air molecules (if you could distinguish them) in your room so
that half of them are in the front and half in the back. All these different arrange-
ments have exactly the same energy (i.e., they are degenerate), and clearly their
number is very small in comparison to the number of degenerate arrangements
among quantum states (as opposed to arrangements between the front and back of
the room).

Not only is the degeneracy of any one level huge, but neighboring energy
levels are very tightly packed as well. The spacing between the levels for the air
in a room is about 10−24 eV, or about 10−50 of the total internal energy of the air.
This is far too small to be measurable.

When dealing with large systems, then, we cannot control the particular quan-
tum energy level for the system as a whole. The best we can do is to hold the
system to within some small energy range �E , which is very large in comparison
with the spacing of the levels. For the number of states in the range between E
and E + �E , we write

�(E, �E) = g(E)�E (6.3)

where the “density of states,” g(E), is the number of states per unit energy
(subsection 1B.5).

D Density of states and the internal energy

We shall now show that for macroscopic systems, the number of accessible states
is extremely sensitive to the system’s thermal energy, volume, and number of
particles.

D.1 The model

The success of the statistical approach depends only upon the feature that the
number of accessible states is extremely sensitive to the internal energy. This
overall feature can be derived from any reasonable model, so we illustrate it
with a familiar one, in which the energy in each degree of freedom has the form
bξ 2, where b is a constant and ξ is a position or momentum coordinate (e.g.,
p2

x/2m, kx2/2, etc.)

D.2 Identical particles

As we saw in Chapter 2, the number of states for a system is the product of the
number of states for the individual particles. If the system has N distinguishable
particles and each particle has ω states available to it, then the number of states
for the total system is given by

� = ω × ω × ω × · · · = ωN (6.4)
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Figure 6.3 Shown here are six of the 60 different ways in which three
distinguishable particles can be arranged among five states, one per state. These six
arrangements are the same if the particles are identical. So for three identical
particles the number of different arrangements is reduced by a factor of 3! = 6
compared with the number of arrangements for distinguishable particles.

Figure 6.4 There are N!
ways of permuting N
distinguishable particles
among N states so that
there is one per state, as
shown here for N = 1, 2,
3, and 4. In each case, all
N! permutations are
identical if the particles
are identical.

If the particles are indistinguishable, however, the number of states is reduced by
1/N !

� = ωN

N !
(6.5)

The reason for this is illustrated in Figures 6.3 and 6.4. There are N ! ways
of arranging N particles among N boxes. If the particles are identical, these
arrangements are all the same. So the number of different quantum states for
identical particles is reduced by a factor of N ! relative to that for distinguishable
particles.1

1 As we will see in Chapter 19, the 1/N! factor is only correct if there are many more states than

particles, so that there is little likelihood that two or more particles will occupy the same state

simultaneously.
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If we use Stirling’s approximation for N ! (equation 2.5),2

N ! ≈
√

2π N

(
N

e

)N

≈
(

N

e

)N

, (6.6)

we can write result 6.5 as

� = ωN

N !
≈

( eω

N

)N
. (6.5′)

With this, equations 6.4 and 6.5′ can be written jointly as

� = ωN
c (6.7)

where ωc is the number of states per particle, “corrected” for the case of identical
particles:

ωc = ω (distinguishable particles)
(6.8)

ωc = eω

N
(corrected for identical particles)

Equations 6.7 and 6.8 reduce the problem of finding the number of states � for
a large system of N particles to that of finding the number of states ω for one
single particle.

D.3 States per particle

The number of states accessible to a system is calculated with full mathematical
rigor in Appendix C. But we can obtain the same answer using simple physical
reasoning, as we now show.

For any one particle, the number of accessible states equals the total accessible
phase-space volume Vr Vp divided by the volume of one state, h3 (Equations 1.4
and 1.5). For a particle that moves in three dimensions,

ω =
∫

dxdydzdpx dpydpz

h3
. (6.9)

The evaluation of this integral is constrained by the fact that the total thermal
energy of the entire system is fixed, which means that the permitted values of
the various coordinates are interdependent. Although it is theoretically possible
that the energy of the entire system is held in just one degree of freedom (i.e.,
one position or momentum coordinate), this is very unlikely as it would force
all the other degrees of freedom into their one zero-energy state. A more even
distribution of energies is much more likely (just as it is much more likely for
large systems of flipped coins to have nearly fifty--fifty heads--tails distributions).
That is, most accessible states correspond to a more even distribution of energies

2 The last step here requires us to show that 2N
√

2π N = 1 in the limit of large N or, equivalently, that√
2π N is negligible when compared to (N/e)N . This can be done by applying L’Hospital’s rule to

the logarithm of 2N
√

2π N to show that the limit of the logarithm is zero.
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among the various degrees of freedom. Since the average thermal energy for each
of the Nν degrees of freedom is given by

bζ 2 =
(

Etherm

Nν

)
⇒ ζrms =

(
Etherm

bNν

)1/2

we would guess that the integral over each coordinate variable ζ would be pro-
portional to this weighted average:

∫
dζ ∝

(
Etherm

Nν

)1/2

.

(We include the constant b in the constant of proportionality.)
For atoms in a solid, the potential energy degrees of freedom involve the

position coordinate terms

κ

2
x2 + κ

2
y2 + κ

2
z2,

so the integral over each of the variables x, y, z gives the above result. But for a
gas the molecular positions are unconstrained, so the integral over x, y, z simply
gives the volume of the container:∫

dxdydz = V (for a gas).

For any rotational degrees of freedom, the rotational kinetic energy about any
particular axis also has the above form (bζ 2 → L2/2I ), so we would expect the
same result ∫

dθdL ∝ 2π

(
Etherm

Nν

)1/2

(The angular orientation is unconstrained, so the integral over dθ gives 2π , which
we can include in the constant of proportionality.)

All this should tell us to expect that equation 6.9 for the number of states
accessible to an individual particle will be given by

ω =
∫

dx dy dz dpx dpy dpz · · ·
h3

=




CV

(
Etherm

Nν

)ν/2

for a gas,

C

(
Etherm

Nν

)ν/2

for a solid,

where C is a constant of proportionality and where the v degrees of freedom per
particle might sometimes include rotations and vibrations. If we correct in the
case of a gas for identical particles (equation 6.8), noting that the atoms in a solid
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Table 6.2. Number of accessible states for ideal gases corrected for identical particles, and for solids

monatomic ideal gas (ν = 3) ωc = C

(
V

N

)(
Etherm

N

)3/2

C = em3/2

h3

(
4πe

3

)3/2

diatomic ideal gas (ν = 5) ωc = C

(
V

N

)(
Etherm

N

)5/2

C = em3/24π2 I

h5

(
4πe

5

)5/2

solid (ν = 6) ωc = C

(
Etherm

N

)3

C =
(m

κ

)3/2
(

2πe

3h

)3

For the entire system of N particles, � = ωN
c .

To find the dependence on temperature, make the replacement Etherm = ν

2
kT .

are distinguishable by their positions in the solid,3 we get the following result for
the corrected number of states per particle:

ωc =




C

(
V

N

)(
Etherm

Nν

)ν/2

for a gas,

C

(
Etherm

Nν

)ν/2

for a solid,

(6.10)

where we have included the factor e in the constant of proportionality C .
It is comforting to know that these intuitive results are the same as those of

the mathematically rigorous treatment in Appendix C (See equation C.5). The
only advantage of the rigorous treatment is that it gives us explicit expressions for
the constants of proportionality C . We summarize these results for the particular
cases of monatomic gases, diatomic gases, and the atoms in solids in Table 6.2.

The important result here is that the number of states accessible to a system
is extremely sensitive to the system’s energy and number of particles (and also
to the volume for a gas). Each of these variables is raised to an extremely large
exponent, which means that small changes in these variables cause huge changes
in the number of accessible states.

D.4 The density of states

We now use the results of Table 6.2 to calculate the density of states, which is the
number of states per unit energy interval (cf. equation 6.3):

g(E) = d�

dE
, where � = ωN

c ∝
(

Etherm

N

)Nν/2

.

3 If the atoms in a solid could migrate to other sites or exchange places, then our integral over the

position coordinates, ∫ dxdydz, would increase by N! times, because the first atom could be at any

of the N lattice sites, the second at any of the N − 1 remaining sites, etc. But this factor N! would

just cancel the identical-particle correction factor of 1/N!, and so the answer would be the same.
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In taking the derivative, we use E, V, N as the independent variables. We
assume that the potential energy reference level u0 remains unchanged (so
that ∂/∂ E = ∂/∂ Etherm) and, upon differentiating, we write the exponent as
Nν/2 − 1 ≈ Nν/2). Combining all the constants together, the results are

g(E)gas ≈ C

(
V

N

)N( Etherm

N

)Nν/2

, g(E)solid ≈ C

(
Etherm

N

)Nν/2

. (6.11)

Example 6.3 Consider a room full of air which has typically 1028 molecules
and 5 × 1028 degrees of freedom. (Each molecule has three translational and two
rotational degrees of freedom.) If room temperature is increased by 1 K, by what
factor does the number of states accessible to the system increase?

Room temperature is around 295 K, so an increase from 295 K to 296 K is
an increase of about 0.34% in temperature -- and hence in thermal energy. Con-
sequently, according to Table 6.2 the number of accessible states would increase
by a factor4

�2

�1
=

(
E2

E1

)Nν/2

= (1.0034)2.5×1028 = 103.7×1025
.

So an increase of just 1 K in room temperature causes a phenomenal increase in
the number of accessible states for the system.

D.5 Liquids

We now look at liquids. In contrast with gases, the volume available to one
particle in a liquid is limited by the volume occupied by others. Also, the variation
of u0 with temperature make liquids act as if they have additional degrees of
freedom, which makes the number of states even more sensitive to the thermal
energy or temperature. Although these things make it difficult to model liquids
accurately, they have no effect on the most powerful tools of thermodynamics,
which are independent of the models and depend only on the fact that the number
of accessible states is extremely sensitive to the system’s internal energy.

Summary of Sections B--D

The fundamental postulate asserts that for a system in equilibrium, all accessible

states are equally probable. Therefore, the probabilities that an isolated system is in

any one state, or in any subset �i of all accessible states, are (equations 6.1, 6.2)

Pany one state = 1

�
, Psubset i = �i

�
.

4 To handle large numbers, use logarithms. It is also convenient to note that ex = 100.4343x and

ln(1 + ε) ≈ ε for small ε.
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For small systems, either energy levels are nondegenerate or the degeneracy is

small. For large systems, however, energy levels have huge degeneracies, and the

spacings between neighboring levels are nearly infinitesimal in comparison with the

total internal energy. For large systems, we write the number of accessible states in

the range between E and E + �E in terms of the density of states g(E) and the size

of the energy interval �E (equation 6.3):

�(E, �E) = g(E)�E .

The number of states for the entire system is the product of the numbers of states

ω for the N individual particles (� = ωN ). But if the particles are identical then the

number of distinct states available to the system is reduced by a factor 1/N !, which

gives (equation 6.7)

� = ωN
c ,

with (equation 6.8)

ωc = ω (distinguishable particles),

ωc = eω

N
(identical particles).

The number of states accessible to any one particle is the total accessible volume

in phase space divided by the volume of a single quantum state. If the particles are

moving in three dimensions then (equation 6.9)

ω =
∫

dxdydzdpx dpydpz

h3
.

Upon evaluating these integrals, we find that the number of states accessible to each

particle ωc and the number of states accessible to the entire system � are as listed in

Table 6.2, and the density of states for these systems is (equation 6.11)

g(E)gas ≈ C

(
V

N

)N (
Etherm

N

)Nν/2

, g(E)solid ≈ C

(
Etherm

N

)Nν/2

,

where C is a constant and ν is the number of degrees of freedom per particle.

We end with a comment about relativistic gases, such as might be found in
the interiors of stars or other plasmas. At very high temperatures, the molecules
are torn apart (as are perhaps the atoms as well), so the particles behave as a
monatomic gas with no rotational or vibrational degrees of freedom. This leaves
each with only ν = 3 translational kinetic degrees of freedom. Because the energy
of each particle is linear in its momentum rather than quadratic (ε = cp), the
integral over each momentum coordinate is directly proportional to E , rather
than

√
E . So

∫
dpx dpydpz ∝ E3. Consequently, the corrected number of states

per particle for a relativistic gas of identical particles is

ωc, relativistic gas ≈ C

(
V

N

)(
E

N

)3

. (6.12)
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Problems

For handling the large numbers in some of these problems, it may be helpful
to use logarithms. Also, it may be helpful to note that log10 e = 0.4343 so that
ex = 100.4343x and that ln(1 + ε) ≈ ε for small ε.

Section A
1. A system has 1024 identical particles.

(a) If the number of states available to each particle increases from two to
three, by what factor does the number of states available to the entire
system increase? (Give the answer in powers of ten.)

(b) If the number of states available to each particle increases from 100 to
101, by what factor does the number of states available to the entire
system increase?

(c) If the number of states available to each of these particles increases from
1.000×1030 to 1.001×1030, by what factor does the number of states
available to the entire system increase?

2. Consider a room containing 1028 distinguishable air molecules.
(a) If you are interested in only their distributions between the front and

back halves of the room, then each molecule has two possible states:
either it is in the front or the back. How many different configurations
are possible for the entire system? (Answer in powers of ten.)

(b) What would be the answer to part (a) if you had divided the room into
quarters?

(c) What would be the answer to part (a) if you had divided the room into
156 compartments?

3. How many times larger is (a) 104 than 103, (b) 1075 than 1063, (c) 101000 than
10100, (d) 10103

than 10102
, (e) 101024

than 101022
?

4. The definition of equilibrium states that the probabilities of all possible dis-
tributions are the same, but that is different from stating that the particles
will be uniformly distributed between the states. Explain the difference, using
the 16 different ways in which four different molecules can be distributed
between the front and back halves of an otherwise empty room.

Section B
5. Consider a system of three spin-1/2 particles, each having z-component of

magnetic moment equal to ±µ. If there is no external magnetic field (B = 0),
all spin states are of the same energy and are equally accessible.
(a) Write down all possible spin configurations of the three. (See

Example 6.1.)
(b) What is the probability that the z-component of the magnetic moment of

the system is −µ?
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(c) What is the probability that the spin of particle 1 is up (+) and the spin
of particle 2 is down (−)?

6. Consider a system of four flipped pennies.
(a) Find the probability that two are heads and two are tails by writing down

all 16 possible heads--tails configurations and counting. Compare with
the binomial prediction PN (n) of equation 2.4.

(b) What is the probability that all four are tails?
(c) Suppose someone told you that two of them were heads and two were

tails, but not which were which. In this case, what is the probability that
penny 1 is heads and penny 3 is tails?

7. A particle is confined to be within a rectangular box of dimensions 1 cm by
1 cm by 2 cm. Furthermore, the magnitude of its momentum is constrained
to be less than 3 × 10−24 kg m/s.
(a) What is the probability that it is in any one particular quantum state?
(b) What is the probability that the magnitude of its momentum is less than

2 × 10−24 kg m/s?
(c) What is the probability that the magnitude of its momentum is greater

than 10−24 kg m/s and less than 3 × 10−24 kg m/s and that it is in the
right-hand half of the box?

8. An otherwise empty room contains 6×1026 air molecules. How many times
more probable is it that they are split exactly 50--50 between front and back
halves of the room than that there is a 49--51 split? (Hint: Use PN (n) and
Stirling’s formula.)

Section C
9. We are going to estimate the spacing between states for a system of 1028

air molecules in a room that is 5 meters across. We will use the fact that a
particle confined to a certain region of space is represented by a standing
wave, and only certain wavelengths fit. (See Figure 1.9.) The momentum of
an air molecule is given by h/λ and its energy by (1/2m)p2, where m =
4.8 × 10−26 kg.
(a) What is the smallest possible energy of an air molecule in this room?

(Hint: What is the longest possible wavelength?)
(b) What is the next smallest possible energy?
(c) Suppose we were to add a tiny amount of energy to the air and that this

added energy just happened to be taken by one of the slowest moving
molecules in the room. What is the smallest amount of energy we could
add?

10. Above, we calculated the minimum energy that could be added to air
molecules in a room if that energy happened to go to the slowest moving
molecule. Now calculate the minimum added energy if that energy goes
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to a molecule which is moving at a more typical speed, 400 m/s. (Hint:
KE = p2/2m, �K E = 2p�p/2m. What is the smallest �p?)

Section D
11. Make a table showing the number of different possible heads--tails configu-

rations for (a) two, (b) three, (c) four coins.
(d) Is the number of different configurations equal to the product of the

numbers of states available to the individual coins in each case?

12. If you roll two dice, how many different configurations are possible if the
dice are:
(a) distinguishable?
(b) indistinguishable? (Notice that 2! is not the right correction factor. We

will see later that N! is not correct if there is an appreciable likelihood
that two particles may occupy the same state, e.g., two dice can show the
same number of dots.)

13. How many different heads--tails configurations are possible for a system of
six coins if the coins are:
(a) distinguishable?
(b) indistinguishable? (See the previous problem.)

14. Assuming that the elements are distinguishable from each other, find the
number of different states available to
(a) a system of five dice,
(b) a system of three coins and two dice,
(c) a system of 1024 molecules, each of which could be in any one of five

different states? (Give the answer in powers of ten.)

15. System A has 30 particles, each having two possible states. System B has 20
particles, each having three possible states. All the particles are distinguish-
able from each other. Calculate the number of states available to (a) system
A, (b) system B, (c) the combined system, A + B?

16. How many different ways are there of putting two particles in three boxes (no
more than one per box), if the particles are (a) distinguishable, (b) identical?

17. Repeat the above problem for
(a) two particles in 5 boxes,
(b) two particles in 100 boxes,
(c) three particles in 100 boxes,
(d) three particles in 1000 boxes.

18. In a certain system, the density of states doubles when the internal energy is
doubled.
(a) Is this a macroscopic or a microscopic system?
(b) How many degrees of freedom does it have?
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19. In a certain system, the density of states increases by a factor of 101022
when

the system’s thermal energy is increased by 0.01%.
(a) Is this a macroscopic or a microscopic system?
(b) How many degrees of freedom does it have?

20. A certain system has 4 × 1024 degrees of freedom. By what factor does the
number of available states increase if the internal energy is (a) doubled, (b)
increased by 0.1%? (Assume that the energy range, �E , is the same for both
cases. Give the answer in powers of ten.)

21. Consider a cup (1/4 liter) of water. Each molecule has six degrees of freedom
(three translational and three rotational).
(a) Roughly how many water molecules are in this system?
(b) If you raise the temperature of the cup of water from room temperature

(295 K) to boiling, the system’s thermal energy increases by what factor?
(Assume that u0 remains constant.)

(c) Estimate the factor by which the density of states increases when the
temperature of a cup of water is raised from room temperature to the
boiling point.

22. Consider the air in an oven at 500 K. The oven has a volume of 0.15 m3 and
contains 2.2 × 1024 identical nitrogen molecules, each having five degrees
of freedom and a mass of 4.8 × 10−26 kg.
(a) What is the thermal energy of this system?
(b) The magnitude of the momentum of any molecule can range from 0 to

p0. Estimating p0 to be roughly twice the root mean square momentum,
what is the volume in momentum space that is available to any particle?

(c) We are going to calculate the number of accessible quantum states for the
molecules’ translational motions, ignoring the rotational states because
the latter turn out to be relatively few in comparison. Considering the
translational motion only, how many different quantum states would
be accessible to any particle, if it were all by itself? (Vr Vp/h3, where
Vp = (4/3)πp3

0.)
(d) What is the number of states per particle ωc corrected for the case of

identical particles?
(e) How many different quantum states are accessible to the entire system?

23. In a classroom at 290 K, there are typically 3 × 1027 air molecules each having
five degrees of freedom and mass 4.8 × 10−26 kg. The room has dimensions
3 m by 6 m by 7 m. You are going to calculate how many quantum states are
accessible to this system.
(a) What is the thermal energy of this system?
(b) The magnitude of the momentum of any molecule can range from 0 to

p0. Estimating p0 to be roughly twice the root mean square momen-
tum, what is the volume in momentum space that is available to any
particle?
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(c) For reasons cited in the previous problem, we are going to calculate the
number of accessible quantum states for translational motion and ignore
the relatively fewer states for rotational motion. How many different
quantum states would be accessible to any particle if it were all by itself?

(d) If all the particles were identical, what would be the corrected number
of states per particle, ωc?

(e) How many different quantum states are accessible to the entire system?
(f) Answer parts (d) and (e) but now assuming that 79% are identical nitrogen

molecules and 21% are identical oxygen molecules (of about the same
mass).

24. Repeat parts (a)--(e) of the above problem for the system of iron atoms in a
nail at room temperature (295 K). Each iron atom has six degrees of freedom
and mass 8.7 × 10−26 kg, and its center of mass movement is confined to a
volume of 10−30 m3. There are about 1023 such iron atoms in a typical nail.

25. Suppose that as a certain material melts, the number of degrees of freedom
per molecule is reduced from six to three. Therefore, the system’s thermal
energy, Etherm, is reduced by a factor 1/2 and the exponent ν/2 in Equation
6.9 is also reduced by a factor 1/2. That would seem to indicate that as you add
heat to this system the number of states gets reduced immensely. Later we will
show, however, that as you add heat to any system, the number of accessible
states must increase. How can you explain this apparent contradiction for
the melting of this material? (Hint: Although a particle in the two phases
has the same accessible volume in momentum space, since it has the same
temperature and the same kinetic energy, this cannot be said for the accessible
volume in coordinate space.)

26. (a) Show that in our result 6.8 for ωc, for systems with identical particles
we have left out a factor 2N

√
2π N .

(b) Show that this factor goes to 1 in the limit of large N. (Hint: Show that
the logarithm of this factor goes to zero by applying L’Hospital’s rule to
it.)

(c) Stirling’s approximation is often simplified for large N to the form N ! =
(N/e)N or equivalently ln N ! = N ln N − N . This simplification ignores
the factor involving

√
2π N . How is this justified?
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A Interacting systems

We now examine interacting systems. We will find that the number of states
for the combined system is extremely sensitive to the distribution of energy
among the interacting subsystems, having a very sharp narrow peak at some
“optimum” value (Figure 7.1). Configurations corresponding to a greater number
of accessible states are correspondingly more probable, so the distribution of
energy is most probably at the peaked optimum value. Even the slightest deviation
would cause a dramatic reduction in the number of accessible states and would
therefore be very improbable.

This chapter is devoted to developing this statement of probabilities, which
underlies the most powerful tools of thermodynamics. We elevate it to the stature
of a “law.” Even though there is some small probability that the law may be broken,
it is so minuscule that we can rest assured that we will never see it violated by any
macroscopic system. Rivers will flow uphill and things will freeze in a fire if the
law is broken. No one has ever seen it happen, and you can bet that you won’t either.

B Microscopic examples

We now investigate some examples of how the number of states is affected by
the distribution of energy between interacting systems. Consider the situation

117
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A2

A1

∆Q

∆N ∆V

(a) (b)

energy distribution

Ω0

Figure 7.1 (a) We consider an isolated system A0 composed of two subsystems, A1

and A2, which are interacting with each other thermally, mechanically, and/or
diffusively. (b) As a result of these interactions, the number of states �0 accessible to
the combined system is a very sharply peaked function of the distribution of energy
between the two interacting subsystems.

of Figure 7.1, where an isolated system A0 is composed of two subsystems, A1

and A2, which may be interacting in any manner. The internal energies of the
two subsystems may change as a result of their interaction, but the energy of the
combined system is constant:

E1 + E2 = E0 = constant.

In the last chapter (Table 6.2) we found that the number of states that are
accessible to a system with Nν degrees of freedom is extremely sensitive to its
thermal energy:1

� ∝ E Nν/2. (7.1)

Furthermore, as we learned in Chapter 2, the number of states for the combined
system is the product of the numbers of states for the subsystems:

�0 = �1�2 ∝ E N1ν1/2
1 E N2ν2/2

2 . (7.1′)

We now apply this result to two examples. For simplicity, we take the constant of
proportionality to be unity, and we assume that the energy comes in units of 1,
with the energy of the combined system being 5:

E1 + E2 = E0 = 5.

1 For simplicity we set the reference level for potential energies, u0, equal to zero, so that E = Etherm.



Entropy and the second law 119

Table 7.1. The number of accessible states for two small
interacting systems with six and 10 degrees of freedom,
respectively (E0 = 5)

E1 E2 �1 = E3
1 �2 = E5

2 �0 = �1�2

0 5 0 3125 0
1 4 1 1024 1024
2 3 8 243 1944
3 2 27 32 864
4 1 64 1 64
5 0 125 0 0

Total 3896
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Figure 7.2 Plots of
�1, �2, and �0 vs. E1 for
interacting systems A1

and A2, which have six
and 10 degrees of
freedom, respectively. For
simplicity, we assume
that the energy comes in
units of 1, and that the
total energy of the
combined system is
E1 + E2 = E0 = 5.

Example 7.1 For our first example we choose very small systems of perhaps
two or three particles each: A1 has 6 degrees of freedom and A2 has 10. According
to the above,

�1 = (E1)3, �2 = (E2)5. (7.2)

Equations 7.1 and 7.2 give us the number of accessible states for each of the six
possible ways of distributing this energy between the two subsystems. The results
are displayed in Table 7.1 and Figure 7.2.

Since the combined system is equally likely to be in any of these states, the
most probable energy distribution is E1 = 2, E2 = 3. Half of the available states
(1944/3896 = 0.50) have this energy distribution, so the system will be in this
configuration half the time.
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Table 7.2. The number of accessible states for two small
interacting systems with 60 and 100 degrees of freedom,
respectively (E0 = 5)

E1 E2 �1 = E30
1 �2 = E50

2 �0 = �1�2

0 5 0 8.88 × 1034 0
1 4 1 1.27 × 1030 1.27 × 1030

2 3 1.07 × 109 7.18 × 1023 7.71 × 1032

3 2 2.06 × 1014 1.13 × 1015 2.32 × 1029

4 1 1.15 × 1018 1 1.15 × 1018

5 0 9.31 × 1020 0 0

Total 7.72 × 1032

Example 7.2 Next we consider small systems that are just 10 times larger than
those in Example 7.1 (i.e., perhaps 20 or 30 particles each). A1 has 60 degrees of
freedom and A2 has 100. For this case,

�1 = (E1)30, �2 = (E2)50.

The number of states available to the combined system for each of the six possible
energy distributions is given in Table 7.2.

For this system the E1 = 2, E2 = 3 energy distribution is by far the most prob-
able, because it accounts for 99.9% (7.71 × 1032/7.72 × 1032) of all accessible
states. Nonetheless, there is still a small probability (0.001) that the system does
not have this energy distribution.

Notice that even when the combined system has only 60 + 100 = 160 degrees
of freedom (somewhere around 50 particles altogether), the one distribution of
energies is overwhelmingly more probable than all other distributions combined.
In the next section we will learn that for macroscopic systems, the probability for
anything other than the “optimal” energy distribution is impossibly small.

In these examples, we assumed that energy comes in units of 1 for simplicity.
Had we allowed a continuum of energy distributions, we would have arrived at
the smooth distribution illustrated in Figure 7.3. But the important point is that
as the number of degrees of freedom increases, the distribution of states becomes
increasingly peaked.

C Macroscopic systems

C.1 A typical system

We now consider a macroscopic example, using the same simplifying assump-
tions as before (energy increments of 1, the energy of the combined system is 5)
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Figure 7.3 Plots of the number of accessible states vs. energy distribution for two
very small interacting systems. The systems are the same as those in Tables 7.1 and
7.2, respectively, except that the energy can have a continuum of values rather than
coming in units of 1. (a) The two systems have six and 10 degrees of freedom,
respectively. (b) The two systems have 60 and 100 degrees of freedom, respectively.

Table 7.3. The number of accessible states for two macroscopic
interacting systems with 6 × 1024 and 10 × 1024 degrees of
freedom, respectively (E0 = 5)

E1 E2 �1 = E3×1024

1 �2 = E5×1024

2 �0 = �1�2

0 5 0 103.49 × 1024 0
1 4 1 103.01 × 1024 103.01 × 1024

2 3 100.90 × 1024 102.39 × 1024 103.29 × 1024

3 2 101.43 × 1024 101.51 × 1024 102.94 × 1024

4 1 101.81 × 1024 1 101.81 × 1024

5 0 102.09 × 1024 0 0

Total 103.29 × 1024

but for systems that are 1024 times larger. That is, the number of degrees of
freedom for A1 and A2 are now 6 × 1024 and 10 × 1024, respectively, so that

�1 ≈ (E1)3×1024
, �2 ≈ (E2)5×1024

.

In this case, the numbers of states for each of the six possible distributions
of energy between the two subsystems is as given in Table 7.3. The apparent
similarity of these numbers is deceiving. For example, the two numbers 103.01×1024
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Table 7.4. Tools for dealing with large and small
numbers

ax = 10 x log10(a) ln(1 + ε) ≈ ε (for ε � 1)

ex = 100.4343x (1 + ε)x ≈ eεx = 100.4343εx (for ε � 1)

P(E)

10−9 E0

10−9 E0

×10220000

×10360000000000000

E

Figure 7.4 (Not to scale)
For macroscopic systems
we find that a variation of
just one part per billion in
the energy distribution
causes a huge change in
probability, typically
being a factor of 10220 000

at the peak and
10360 000 000 000 000 at each
steeply sloping side.

and 103.29×1024
differ by 100.28×1024 = 10280 000 000 000 000 000 000 000. The distribution

(E1 = 2, E2 = 3) is this many times more probable than all the other distributions
combined! Clearly, the odds are overwhelming.

C.2 Smaller energy increments

In the preceding examples, the energy increments were one fifth of the total.
Suppose that we have extremely accurate instruments that can measure energies to
parts per billion. Even then the difference between two neighboring distributions
would be astronomical. Using the tools of Table 7.4, we can see that the difference
between the two distributions differing in energy by one part per billion (δ =
10−9 E0) is given by

�0(E1 = 2)

�0(E1 = 2 + δ)
= 103.6×1014 = 10360 000 000 000 000. (7.3)

The energies in this example lie on the steeply sloping side of the energy distri-
bution (Figure 7.4). Had we started at the peak, the numbers would have been
different but the conclusions the same, as we demonstrate next.
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C.3 The general case

We now calculate the probabilities for all possible distributions of energy between
two interacting systems, making E1 a continuous variable. To eliminate clutter,
we use the symbol ni for the total number of degrees of freedom of system i :

ni = Niνi . (7.4)

The probability that system 1 has energy E1 is proportional to the number of
accessible states. From Table 6.2 and Equation 7.1′,

�0(E1) = En1/2
1 En2/2

2 , where E2 = E0 − E1. (7.5)

We expand the logarithm of the number of states2 in a Taylor series around its
maximum, just as we did for probabilities in Section 3B. The details of this
calculation are also in Appendix D and give the result3

P(E1) = 1√
2πσ

e−(E1−E1)2/2σ 2
(7.6)

where

E1 = n1

2
kT and σ =

√
n1n2

2n0
kT .

As we have seen before, the standard deviation σ increases and the relative
fluctuation σ/E decreases with the square root of the system’s size. For example,
if A2 is a relatively large system, i.e., a “reservoir,” so that n1 � n2 ≈ n0, then
the standard deviation and relative fluctuation become

σ ≈
√

n1

2
kT,

σ

E1

≈
√

2

n1
(A2 � A1). (7.7)

So, for a small macroscopic system, having 1024 degrees of freedom, the relative
fluctuation would be given by

σ

E1

≈ 10−12 (for 1024 degrees of freedom).

Even if we could measure energies to parts per billion, this would still be 1000
times larger than the standard deviation. The probability for a fluctuation this
large would be

P(E1 ± 1000σ )

P(E1)
= e−(±1000σ )2/2σ 2 ≈ 10−217 000. (7.8)

2 Do you remember why we expand ln � rather than � itself ? ln � is a smoother function than is �,

so the first few terms of the expansion approximate it better.
3 Not surprisingly, this result is identical to the binomial probability results 3.7 and 3.4, except that

the energy distribution is in units of kT . For comparison, simply make the substitution N → n0/2

and note that the probabilities for any one quantum of energy to be in systems 1 or 2, respectively,

are p = n1/n0 and q = n2/n0.
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Compare this with the numbers in Table 6.1. It is clear that, even for a contin-
uous distribution of energies, the probability for the smallest measurable fluctu-
ation from the distribution’s peak is impossibly small. A quick calculation shows
that if we had an extremely fast and accurate instrument that could measure ener-
gies in increments of one part per billion, and if this instrument could give us
readings at microsecond intervals, we still would have to wait nearly 10217 000

(more precisely, 10216 976) times longer than the age of the Universe to see the
distribution of energies fluctuate just once!

The odds are overwhelming. Interacting macroscopic systems in equilibrium
will always be in a state with the one optimal distribution of energies between
them. The chance of our seeing a different distribution of energies is infinitesimal.

Summary of Sections B and C

Consider an isolated system A0 that is composed of two interacting subsystems A1

and A2. When in equilibrium, the number of states for the combined system is given

by (equation 7.1′)

�0 = �1�2 ∝ E N1ν1/2
1 E N2ν2/2

2

This function of the energy distribution is so sharply peaked for macroscopic

systems that the probability of ever seeing a fluctuation is impossibly small.

We can calculate the probabilities for all possible energy distributions by

expanding the logarithm of �0 in a Taylor series about the peak. Writing �0 as a

function of the energy in system A1 and using the simplifying notation

(equation 7.4)

ni = Niνi

we get the following distribution in probabilities (7.6),

P(E1) = 1√
2πσ

e−(E1−E1)2/2σ 2

where

E1 = n1

2
kT and σ =

√
n1n2

2n0
kT .

If A1 is interacting with a large reservoir, for example, the standard deviation and

relative width are (equation 7.7)

σ ≈
√

n1

2
kT ,

σ

E1

≈
√

2

n1
(A2 � A1).

The relative fluctuation is inversely proportional to the square root of the number of

degrees of freedom. Therefore, for a typical small but macroscopic system having

1024 degrees of freedom, the fluctuations are about 10−12 of the system’s internal

energy -- a long way below our ability to detect them.
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D The second law of thermodynamics

We have learned that, when two interacting macroscopic systems are in equilib-
rium, the distribution of energy must be such that the number of states available to
the combined system is a maximum. Their energies can be expressed as functions
of other parameters, such as temperature, pressure, chemical potential, the num-
bers of particles of the various types, volumes, magnetic fields, electric fields,
etc. Since the energies are functions of these “system variables,” we can reword
our previous result as follows.

When two interacting macroscopic systems are in equilibrium, the values of
the various system variables will be such that the number of states �0 available
to the combined system is a maximum.

There is a very important corollary to this result, which is called the “second
law of thermodynamics.” There are many equivalent ways of stating it, but they all
rely on the following: if the number of states �0 is a maximum when two systems
are in equilibrium, then �0 must be increasing as they approach equilibrium.

Second law of thermodynamics

As two interacting macroscopic systems approach equilibrium, the changes in the

system variables will be such that the number of states �0 available to the combined

system increases. More simply, in the approach to equilibrium,

��0 > 0. (7.9)

Notice that the second law is based on probabilities, whereas the first law
reflects inviolable fact (we think). The second law does not apply to small systems,
whereas the first law does. For large macroscopic systems there is some small
but finite probability that the second law could be violated. But we will never see
it happen.

For example, there is some small probability that all the air in your room might
rush over to one corner, leaving you to suffocate. Or water might flow uphill, or
heat might flow from cold to hot and water might boil as ice cubes are added.
There is some small probability that your blood might transport carbon dioxide
to your cells and oxygen away rather than vice versa. The likelihood of any of
these happening would be similar to that of flipping 1024 coins and having them
all land heads. As we saw in the previous section, even the inception of such
anomalous behavior is extremely improbable -- even fluctuations at the parts per
billion level. Clearly, we can base our studies on a law whose chance of violation
is so minuscule that we can rest assured that we will never witness a violation. In
fact, in every moment of our existence we bet our very lives on these odds and,
needless to say, we always win.

We should mention that there are increasingly important fields where the
systems studied are microscopic, having far fewer than Avogadro’s number of
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Figure 7.5 Plot of the
number of accessible
states �0 and the entropy
S0 versus energy
distribution for two small
interacting systems with
600 and 1000 degrees of
freedom, respectively
(� ≈ E Nν/2). The entropy
is clearly a smaller and
smoother function, even
for this very small system.
The difference between
the two functions
becomes even more
pronounced as the size of
the system increases.

elements. Examples include microelectronics, digital information storage and
signal processing, cellular biology, low-temperature studies, thin films and surface
physics, nanotechnology, and many others. For these smaller systems, the relative
fluctuations are larger (equation 7.7), and there is a correspondingly larger chance
for violation of the second law. But you should be able to handle these smaller
systems using either the results 7.6 or the techniques for small systems that were
introduced at the beginning of this book.

E Entropy

E.1 Definition and properties

The number of states for a macroscopic system is extremely large and unwieldy.
The logarithm of a large number is smaller and more manageable, so we find it
more convenient to work with the logarithm of � rather than with � itself. A
particular multiple of this logarithm is called the “entropy.” It is given the symbol
S and is defined as follows (Figure 7.5):

entropy S ≡ k ln �. (7.10)

Boltzmann’s constant k (equation 4.11) gives entropy the magnitude and units
that are convenient for typical macroscopic systems.

Let’s take a moment to appreciate how nice this is to work with. If � is a
number like 101024

, then ln � is a number like 1024. If we multiply this by k,
which is a number like 10−23, the result is a number like 10. That is,

� ≈ 101024
,

ln � ≈ 1024,

k ln � ≈ 10 J/K.
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Isn’t that a big improvement? Notice that no information is lost. Given this num-
ber, we can easily work backwards to find �, if we wish:

S = k ln � ⇒ � = eS/k . (7.11)

Entropy also has another convenient property. Whereas the number of states
accessible to the combined system is multiplicative,

�0 = �1�2,

the entropy of the combined system is additive (since ln ab = ln a + ln b):

k ln �0 = k ln �1 + k ln �2 ⇒ S0 = S1 + S2.

That is, the whole is the sum of the parts. This makes it algebraically similar
to some other system variables, such as internal energy, volume, or number of
particles:

S0 = S1 + S2, V0 = V1 + V2,

E0 = E1 + E2, N0 = N1 + N2.

Also like the energy, volume, and number of particles, the entropy of a system
can be determined at any time unambiguously, independently of what it was in
the past or what it will be in the future. It is a measure of the number of accessible
states, which in principle can be counted at any time, just like you could count
number of chairs in a room at any time. That makes its differential dS exact, just
like the differentials dE , dV , dT , dp and dN .

Example 7.3 Consider a system A0 consisting of interacting subsystems A1

and A2 for which �1 = 1020 and �2 = 2 × 1020. What is the number of states
available to the combined system A0? Also, what are the entropies S1, S2, and S0

in terms of Boltzmann’s constant?
The number of states accessible to the combined system is

�0 = �1�2 = 2 × 1040.

The entropies S1 and S2 are given by

S1 = k ln �1 = k ln 1020 = 46.1k,

S2 = k ln �2 = k ln 2 × 1020 = 46.7k.

The entropy of the combined system is

S0 = k ln �0 = k ln 2 × 1040 = 92.8k.

which you could also get by adding the results for S1 and S2 above.
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So far we have considered just two interacting subsystems. But we would
get the same results for three, four, five, or any number of interacting subsys-
tems.4 The number of states accessible to the combined system would be given
by

�0 = �1�2�3 · · ·

and its entropy would be given by

S0 = S1 + S2 + S3 + · · · . (7.12)

E.2 Entropy and the second law

The word “entropy” is not a part of our everyday vocabulary, as is the word
“energy,” but there is nothing inherently magical or mystical about it. The entropy
is simply a convenient measure of the number of states accessible to a system. As
explained above, it is more convenient than using the number of states directly
for two reasons:

� it is smaller and more manageable;
� entropies are additive, whereas numbers of states are multiplicative.

The second law, equation 7.9, tells us that the number of accessible states
must increase as systems approach equilibrium and that it is a maximum when
they are in equilibrium. Because the entropy is the logarithm of the number of
accessible states, when � increases so does S and when � is a maximum so is S
(Figure 7.5). Consequently, an alternative and equivalent statement of the second
law is as follows.

Second law of thermodynamics

For systems interacting in any way (whether or not they are yet in equilibrium) the

entropy of the combined system cannot decrease:

�S0 ≥ 0. (7.13)

Notice that the second law applies to the combined entropy of all the interacting
systems, not to the entropy of just one of them. For example, our Sun loses entropy
as it radiates energy out into space. But the entropy of the Universe as a whole
increases as a result.

This chapter on entropy and the second law is the most important chapter in
the whole book, and it is worthwhile to review what has been covered.

4 In fact, you can prove that if the result is correct for two systems then it has to be true for any number

of systems, by calling the combined system “system 1,” and then adding one more as “system 2.”

In this way you can keep adding one more system for as long as you like, and the results must be

true each time.
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Summary of Chapter 7

Earlier, it was promised that the fundamental postulate would form the basis of all

statistical tools used in the study of large systems. This postulate states that a system

in equilibrium is equally likely to be found in any of its accessible states. Hence

configurations corresponding to a greater number of states are correspondingly

more probable.

For two or more interacting macroscopic systems, the number of states for the

combined system is extremely sensitive to the distribution of energy between them,

being very sharply peaked. Hence, as energy is exchanged between interacting

systems, they will tend toward more probable configurations (i.e., those with a

greater number of accessible states) until they reach the peak in probabilities. At that

point, they are in equilibrium. The peak is so narrow that any deviation from this

optimal energy distribution will never be seen.

The distribution of energies is a function of system variables such as pressures,

temperatures, volumes, numbers of particles, magnetic moments, etc., depending on

the types of interactions between the subsystems. The above statement that the

combined system in equilibrium must have some “optimum” distribution of

energies among the subsystems, is also a statement that these system variables must

have “optimal” values.

We define a quantity called “entropy,” which is proportional to the logarithm of

the number of accessible states, making it much smaller and easier to work with

(equation 7.10):
entropy S ≡ k ln �.

The fact that � must be a maximum when the system is in equilibrium means that S

must also be a maximum.

We will rarely refer directly to the fundamental postulate itself again, but the

needed information is carried in the law that S is a maximum when interacting

systems are in equilibrium. This is what we will use henceforth.

E.3 Examples

In the last chapter we found the number of states � accessible to some common
systems in terms of the temperature, volume, and number of particles (Table 6.2).
According to equation 7.10, the dependence of the corresponding entropies on
(V,T) would be:5

for a monatomic ideal gas, S = ln C + Nk ln V + 3
2 Nk ln T ;

for a diatomic ideal gas, S = ln C + Nk ln V + 5
2 Nk ln T ;

for a solid, S = ln C + 3Nk ln T .

(7.14)

5 You might wonder how we can take the logarithm of units, such as K for the temperature or m3

for the volume. We don’t have to: for every “unit” that appears in the temperature or volume, there

must be a “1/unit” in the constant C, because the total number of states � has no units at all. And,

adding the two, you get ln(unit) + ln(1/unit) = 0, so they cancel, no matter what they are.
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where we have lumped all constants together in C. You can see that entropy
increases with volume and temperature, owing to the increased volumes in coor-
dinate and momentum space, respectively. For solids, the increased volume in
coordinate space is accessed through larger amplitude vibrations and is therefore
contained in the temperature term.

But there is trouble on the horizon. The system must have at least one state
available to it (at least the one that it is in). So k ln � cannot be negative. Yet, in the
above expressions, the entropy could be negative for sufficiently small volumes
or temperatures. So we must conclude that the way in which we counted states in
Chapter 6 is incorrect if either the system is extremely dense or the temperature
is extremely low. The physics of these highly condensed systems (condensed in
either coordinate or momentum space) is very interesting, and we will return to
it after we have developed more appropriate machinery later in this book.

Problems

Section A
1. Consider the following continuous functions of the energy of a system:

f1(E) = E2(5 − E)3, f2(E) = E20(5 − E)30,

f3(E) = E2×1023
(5 − E)3×1023

.

(a) Show that for each of these, the maximum is at the same place, E = 2.
(b) Show that the peak widths differ, by calculating the ratios f (2)/ f (1) and

f (2)/ f (3) for each.

2. For what value of E1 does the function En1
1 (E0 − E1)n2 peak? Answer in

terms of n1, n2, and E0.

Section B
3. Consider a system A0 composed of subsystems A1 and A2, which have three

and four degrees of freedom, respectively. The energy comes in units of 1,
and the total energy of the combined system is 4.
(a) Construct a table similar to Tables 7.1 or 7.2, illustrating �1, �2, and �0

for the various possible energy distributions between the two subsystems.
(b) What is the probability that the system will be in a state with E1 = 3,

E2 = 1?
(c) Which distribution of energies is most probable, and what is the proba-

bility for this distribution?

4. Repeat the above problem for interacting subsystems with five and six degrees
of freedom, respectively.

5. Consider a system A0 composed of subsystems A1 and A2 for which the
number of degrees of freedom are 4 and 6, respectively. Energy comes in
units of 1 and the energy of the combined system is 6.
(a) Construct a table like Table 7.1 or 7.2 illustrating the seven possible

energy distributions for the system and �1, �2, and �0 for each.
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(b) Which distribution of energies is most probable, and what is the proba-
bility for this distribution?

6. Repeat the above problem for systems 10 times as large.

7. Consider a system A0 composed of three interacting subsystems, A1, A2,
and A3. Suppose that these subsystems have four, five, and six degrees of
freedom, respectively, and that the energy comes in units of 1, with total
energy E0 = E1 + E2 + E3 = 4. Using � = E Nν/2,
(a) make a table showing �1, �2, �3, and �0 for each possible distribution

of the energy among these three systems (15 different distributions in
all).

(b) find which energy distribution is the most probable and its probability.

8. Consider two interacting systems, isolated from the rest of the Universe.
System 1 has four degrees of freedom and system 2 has ten. Their combined
energy is 4, and comes in units of 1.
(a) Make a table similar to that of Tables7.1 and7.2 for the energies and states

available to each system and the states available to the combined system.
(b) What is the probability that this system will at any instant be in the

(E1, E2) = (1, 3) state?

9. Review the definition of equilibrium. Explain why it is necessary for a com-
bined system to be in equilibrium for the probability calculations relating
to Tables 7.1--7.3 to be valid. (Hint: You will need to use the fundamental
postulate.)

10. In Chapter 6 we saw that the number of quantum states available to a gas
particle is proportional to the system’s volume, V. Therefore, we found we
could write the volume dependence of the number of states accessible to a
system of N such particles as � ≈ V N (equation 6.11). We now consider two
interacting systems, having identical particles and identical temperatures but
separated by a partition. If the combined volume V0 is fixed, V1 + V2 = V0,
then we can write �0 = �1�2 = constant × V N1

1 (V0 − V1)N2 . Find for what
value of V1 this is a maximum. Answer in terms of N1, N2, and V0.

Section C
11. How many times larger is

(a) 1012 than 1011,
(b) 106.02×1025

than 106.01×1025
,

(c) 101025
than 101023

?

12. How many times larger is:
(a) 103 than 102,
(b) 1045 than 1035,
(c) 101000 than 10998,
(d) 101000 than 10100,
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(e) 101.56×1024
than 101.41×1024

,
(f) 103.56×1025

than 108.67×1024
?

13. What number is a billion times larger than 102×1020
?

14. In constructing Table 7.3 we assumed that the numbers of degrees of freedom
for each of the two subsystems were 6 × 1024 and 10 × 1024, respectively.
Construct a similar table for two interacting systems that are twice as large.

15. Consider a system consisting of two interacting subsystems with 24 × 1024

and 20 × 1024 degrees of freedom, respectively. Construct a table similar to
Table 7.3 listing �1, �2, and �0.

16. Suppose that �1 = E1024

1 and �2 = E2×1024

2 . Find how much a change of
0.01 in the energy distribution affects the probabilities, by calculating the ratio
�0(E1 = 2, E2 = 3)/�0(E1 = 2.01, E2 = 2.99). (Hint: Use logarithms and
the tools in Table 7.4.)

17. For the case illustrated in Table 7.3, where the subsystems have 6 × 1024

and 10 × 1024 degrees of freedom, respectively, compute the ratio �0(E1 =
2 + δ, E2 = 3 − δ)/�0(E1 = 2, E2 = 3), for δ = 5 × 10−9. (Hint: Use log-
arithms and the tools in Table 7.4.) Did you get the answer given in
equation 7.3?

18. Given that �0 = �1�2 = Em1/2
1 (E0 − E1)m2/2, where m = Nν is the num-

ber of degrees of freedom for a system, use the fact that d�0/dE1 = 0 when
�0 is a maximum to show that, in equilibrium, E1 = [m1/(m1 + m2)]E0.
How is this consistent with equipartition?

19. Consider two interacting systems, isolated from the rest of the Universe.
System 1 has 4 × 1024 degrees of freedom and system 2 has 1.2 × 1025.
Their combined energy is 4, and comes in units of 1.
(a) Making the same assumptions as in the text, construct a table similar to

that of Table 7.3 for the energies and states available to each system and
the states available to the combined system.

(b) What is the probability that this system at any instant is not in the
(E1, E2) = (1, 3) state?

20. Prove the relationships given in Table 7.4. (Hint: Use a Taylor series expansion
for ln(1 + ε).)

21. In the chapter we stated that 10217 000 is 10217 000 times longer than the age of
the universe in microseconds (1024). That is just an approximation. What is
really the ratio of these two numbers?

22. Suppose we have a detector that is capable of measuring fluctuations in the
thermal energy of a system to parts per billion. We wish to find the maximum
number of particles in a system for which we are capable of detecting such
fluctuations.
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(a) Roughly how many degrees of freedom would a system have if we were
just barely able to detect fluctuations of one standard deviation in its
internal energy? (Hint: See equations 3.5 or 7.7.)

(b) If this is a solid whose atoms have six degrees of freedom each and are
separated by 10−10 m (which is typical), what would be the volume of
this solid?

(c) If it were a cube, what would be the length of a side? How does this
compare with the width of a hair, which is about 50 µm?

(d) If the temperature is 295 K and each degree of freedom carries an average
energy of (1/2)kT , what is the total thermal energy of this system, and
what is the minimum fluctuation in energy that our measuring device can
detect? (Give both answers in joules.)

23. Consider a Taylor series expansion (Appendix D, equation D.2) of the loga-
rithm of the number of states accessible to a combined system.
(a) Why should the first derivative be zero?
(b) Show that by setting the first derivative equal to zero, you get the result

D.3.
(c) Evaluate the second derivative at E1 = E1 and show that the answer is

−n0/(2E1 E2) as claimed in equation D.4. (You will need to use n1/E1 =
n2/E2 = n0/E0, which follows from equation D.3.)

(d) Show that the Gaussian form D.6 follows from the results for the first
and second derivatives.

24. Show that the coefficients of the exponentials in equations 3.7 and 7.6 must
have the form 1/(

√
2πσ ) if the sum over all distributions gives a total prob-

ability of unity.

25. Starting with equation 7.6, show that the probability calculation in
equation 7.8 is correct.

Section D
26. If water were to flow uphill, what would have to happen to its temperature if

the first law is not to be violated? (Hint: Total energy is conserved.)

27. List some processes that would violate the second law without violating the
first law.

28. Write out the number 10100 = 10 000 000 000 000 · · · longhand (i.e., don’t
use exponential notation) and time how long it takes you to do it. How long
would it take you to write out 101024 = 101 000 000 000 000 000 000 000 longhand?
(1 year = 3.17 × 107 s.)

Section E
29. Consider two small interacting systems, A1 and A2, for which �1 = 2 and

�2 = 4. What are (a) �0, (b) S1 and S2, (c) S0?
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30. Repeat the above problem for �1 = 200 and �2 = 400.

31. Repeat the above problem for �1 = 102×1024
and �2 = 103×1024

.

32. Consider five small interacting systems for which �1 = 1, �2 = 2, �3 = 3,
�4 = 4, and �5 = 5.
(a) What is the number of states �0 accessible to the combined system?
(b) What are S1, S2, S3, S4, and S5 in terms of Boltzmann’s constant k?
(c) Compute the entropy of the combined system S0 in two ways (in units of

Boltzmann’s constant),
(1) by using the answer to part (a),
(2) by adding the entropies in part (b).

33. A certain system has 6 × 1024 degrees of freedom. Its internal energy
increases by 1%.
(a) By what factor does the number of accessible states increase?
(b) Given that the change of entropy is �S = Sf − Si, where S = k ln �,

what is the increase in the system’s entropy?

34. How many quantum states are accessible to a system if its entropy is
(a) 1 J/K, (b) 42 J/K?

35. Consider two interacting systems, whose combined energy E0 = E1 + E2 =
64 J. System 1 has 2 × 1024 degrees of freedom, and system 2 has 6 × 1024.
The states accessible to each system are given by � = (E/C)n/2, where
C = 10−35 J and n = Nν is the number of degrees of freedom for the system.
(a) When the two are in equilibrium, what is the value of E1?
(b) At equilibrium, what are the entropies of the individual and combined

systems?

36. Find the number of degrees of freedom of a system if
(a) the entropy changes by 0.1 J/K when the thermal energy is tripled,
(b) the entropy changes by 100 J/K when the thermal energy is doubled.

37. Consider an ideal monatomic gas of 1026 atoms.
(a) What is the internal energy of this system at a temperature of 27 ◦C?
(b) If the temperature is raised by 1 ◦C, by what factor does the number of

accessible states increase?
(c) What is the increase in entropy in this case?

38. What is the entropy of a freshly shuffled deck of cards?

39. In the results for ideal gases given in equation 7.14, the constant C contains
a factor m3/2, where m is the molecular mass (see equation C.5). This means
that for two gases having the same number of particles and the same volume
and temperature, the one with the more massive molecules has the greater
entropy. Why should this be?
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In this chapter we study the changes in entropy during thermal interactions. We
will assume all interactions are quasistatic, so that the systems can be considered
to be in equilibrium at all times.

A Temperature

A.1 Definition and consequences

Temperature measures the dependence of entropy on internal energy for purely
thermal interactions (Figure 8.1). It is defined by

1

T
≡

(
∂S

∂ E

)
V,N

. (8.1)

According to the first law (dE = dQ − pdV + µdN , cf. equation 5.7), the varia-
tion in E for purely thermal interactions (i.e., V, N constant) is precisely what we
define as the heat transfer, dQ.1 Therefore, for quasistatic processes2 definition 8.1

1 It is customary to refer to the heat gained or lost by a system as “heat transfer”, which is slightly

misleading. Only in purely thermal interactions (for which dE = dQ, as we consider here) is the

heat gained by one system necessarily equal to that lost by another. It is energy that is conserved,

not heat.
2 Of course, we must assume that the interactions are quasistatic. We cannot even define the temper-

ature (or pressure or chemical potential) for a system that is not in equilibrium.

135
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Figure 8.1 (a) The
number of accessible
states increases
extremely rapidly with E.
(b) The entropy increases
more slowly, as it is
proportional to the
logarithm of E. (c) ∂S/∂E
decreases with increasing
E and equals 1/T. (d), (e)
The slope of S vs. E is
constant during the phase
transitions indicated.

is equivalent to

1

T
= dS

dQ
, (8.2)

because for dV = 0 and dN = 0 we have dE = dQ. Equation 8.2 is more often
written as

dS = dQ

T
, or dQ = T dS. (8.3)

This definition of temperature makes the change in entropy directly propor-
tional to the heat transfer. We don’t have to indicate what parameters are held
constant because, no matter what else is going on and which other parameters
are changing, the definition of temperature ensures that the changes in dS and
dQ are proportional to each other.

Because we defined entropy (equation 7.10) as a measure of the number of
quantum states, you might think that to determine changes in a system’s entropy
you would have to work microscopically and be infinitely patient in order to
count this enormous number of tiny states. But equation 8.3 allows us to do it
with simple tools like thermometers and calorimeters. What a relief!

We can now replace dQ by TdS, so that

dE = T dS − pdV + µdN (first law) (8.4)

involves three pairs of conjugate variables, (T, S), (p, V ), and (µ, N ), each
term having the same mathematical form. Each conjugate pair includes one
“intrinsic” and one “extrinsic” variable, defined as follows. If you divide a system
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in equilibrium into two or more pieces, the intrinsic variable for the entire system
is equal to that of the individual parts, whereas the extrinsic variable for the entire
system is the sum of the individual parts. We have for two systems

intrinsic, T = T1 = T2, p = p1 = p2, µ = µ1 = µ2;
(8.5)

extrinsic, S = S1 + S2, V = V1 + V2, N = N1 + N2.

In the form 8.4, the first law involves only exact differentials, dE , dS, dV , and
dN . The inexact differentials, dQ and dW , have been replaced by T dS and pdV ,
respectively.

Because the second law deals with changes in entropy, the consequences of
the second law are often more transparent if we rearrange the first law 8.4 in the
following form:

dS = 1

T
dE + p

T
dV − µ

T
dN

(
= 1

T
dQ

)
. (8.6)

This equation also provides a practical way of determining changes in a system’s
entropy by measuring changes in energy, volume, or particles. At a more funda-
mental level, of course, this equation is telling us how these measured changes
are affecting the volume in phase space to which the particles have access.

Looking at the coefficients of the three terms in equation 8.6, we see that

1

T
=

(
∂S

∂ E

)
V,N

,
p

T
=

(
∂S

∂V

)
E,N

,
µ

T
= −

(
∂S

∂ N

)
E,V

. (8.7)

The first of these is the definition of temperature 8.1. You can think of the second
and third as corresponding definitions of pressure and chemical potential. They
tell us that p/T measures how the entropy varies with volume and that µ/T
measures how the entropy varies with the number of particles.

A.2 Thermal equilibrium

When two thermally interacting systems are in equilibrium with each other, we
say that they are in “thermal equilibrium.” And, according to the second law, their
combined entropy must be a maximum (Figure 8.2).

S0 = S1 + S2 is a maximum (at equilibrium).

Now suppose that while in equilibrium a small amount of energy is transferred
from system A2 to system A1 (dE2 = −dE1). When a function is at a maximum
its first derivatives are zero, so to first order in the energy transfer, there will be
no change in the entropy. Using equation 8.6 for the changes dS1 and dS2 we find
that, for purely thermal (dV = dN = 0) interactions between the systems,

0 = dS0 = dE1

T1
+ dE2

T2
=

(
1

T1
− 1

T2

)
dE1 (thermal interactions)

(8.8)
⇒ T1 = T2 (thermal equilibrium).

That is, in thermal equilibrium, the temperatures are equal.
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A1

(a)

A2
Ω0

Ω0 = maximum

S0

S0 = maximum

(b)

E1
E2 = E0 − E1

Figure 8.2 (a) Consider
two systems, A1 and A2,
that are interacting
thermally but not
mechanically or
diffusively. (b) As we
learned in the preceding
chapter, when the two are
in equilibrium, the
distribution of energy
between them is such
that the total entropy
S0 = k ln �0 is a
maximum.

A.3 Equipartition

We are now in a position to show that an average energy of (1/2)kT is associated
with each degree of freedom, as was asserted in Section 4E. In Section 6D we
found that the number of states accessible to a system with Nν degrees of freedom
is given by3

� = f (V, N )(Etherm)Nν/2,

(see Table 6.2) where the function f (V, N ) depends on the particular system.
If we insert this into the definition of entropy given in equation 7.10 and use
Etherm = E − Nu0, we get

S = k ln � = k ln f (V, N ) + Nν

2
k ln(E − Nu0).

Now we apply the definition of temperature given in equation 8.1 and get (for u0

constant)

1

T
=

(
∂S

∂ E

)
V,N

⇒ 1

T
= Nνk

2Etherm
⇒ Etherm = Nν

2
kT . (8.9)

This is equipartition: in each degree of freedom there is an average energy (1/2)kT.
As we learned in Chapter 4, the assumption that u0 is constant is usually valid

for solids and gases. But in liquids u0 increases as energy is added, and this extra
avenue for storing energy makes the system act as if it had additional degrees
of freedom. It is customary, however, to include in Etherm only those terms not
associated with increases in the potential energy reference level uo, so that the
result 8.9 becomes appropriate for all systems.

According to equation 8.9, our choice of temperature scale uniquely deter-
mines Boltzmann’s constant k. Choosing a system for which u0 is constant, we

3 To be precise, this result is valid only if the energy in each degree of freedom is of the form ε = bξ2.

We saw that, for example, for relativistic particles ε = bξ and the power Nν/2 becomes Nν.
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simply add energy �E and measure the resulting change in temperature �T. Then
we determine k from

�E = Nν

2
k�T . (8.10)

Summary of Section A

We define the temperature of a system by (equation 8.1)

1

T
≡

(
∂S

∂ E

)
V,N

.

This definition makes the change in entropy directly proportional to the heat transfer

(equation 8.3),

d S = dQ

T
or dQ = T dS,

and it enables us to write the first law entirely in terms of exact differentials

(equation 8.4):

dE = T dS − pdV + µdN .

Because the second law deals with changes in entropy, it is often convenient to

display these changes explicitly, by writing the first law in the form (equation 8.6)

dS = 1

T
dE + p

T
dV − µ

T
dN .

This shows how the entropy (and so the number of accessible states) varies with

changes in energy, volume, and particle number. In analogy with the definition of

temperature for thermal interactions, pressure and chemical potential can be defined

in terms of how the entropy varies during mechanical and diffusive interactions,

respectively (equation 8.7):

1

T
=

(
∂S

∂ E

)
V,N

,
p

T
=

(
∂S

∂V

)
E,N

,
µ

T
= −

(
∂S

∂ N

)
E,V

.

The second law tells us that when two systems are in equilibrium, their combined

entropy is a maximum. Using equation 8.6 for the changes in their entropies when

energy dE is transferred between them, we can show that when two systems are in

thermal equilibrium, their temperatures are equal (equation 8.8):

T1 = T2 (thermal equilibrium).

If the energy per degree of freedom has the usual form bξ 2 then the definitions of

entropy and temperature ensure that an average energy of (1/2)kT is associated with

each degree of freedom (equation 8.9):

Etherm = Nν

2
kT .
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B Heat transfer and accessible states

The change in the entropy of a system during any process is given by

�S = S f − Si = k ln � f − k ln �i = k ln

(
� f

�i

)
. (8.11)

Taking the antilogarithm, we find that a change in entropy �S = �Q/T implies
that the number of accessible states has changed by a factor

� f

�i
= e�S/k = e�Q/kT . (8.12)

A rearrangement of the first law, �Q = �E + p�V − µ�N , allows the fol-
lowing equivalent form of the above expression

� f

�i
= e(�E+p�V −µ�N )/kT . (8.12′)

This form has the advantage that it includes only the exact differentials �E, �V,

�N , meaning that we would only have to measure initial and final values rather
than monitoring the values along the way as we would for �Q.4 Equation 8.12′

will also be the central feature later in the book when we examine small systems
interacting with reservoirs.

Example 8.1 By what factor does the number of states increase if 1 joule of
heat is added to a system at room temperature (295 K)?

According to equation 8.12, the required factor is

� f

� f
= e�Q/kT .

In this case �Q = 1 J and T = 295 K, so �Q/kT = 2.5 × 1020 and therefore

� f

�i
= e2.5×1020 = 101.1×1020

.

What a phenomenal change that is for just one joule of energy!

C Heat capacities

If you put a pot of water on one hot burner and a slice of bread on another, you will
find that the bread is charred to a crisp before the pot of water is even lukewarm.
Likewise, hot toast cools off much more quickly than a pot of hot water. Some
objects have a greater capacity for holding heat than others. We quantify this con-
cept by defining the “heat capacity” of an object to be a measure of how much heat
energy must be added or removed in order to change its temperature by one degree.

In general, a system may be interacting in many ways with its environment.
Adding heat energy may also stimulate interactions of other types. For example,

4 We assume changes sufficiently small that T, p, µ do not change appreciably. Otherwise we would

need to integrate.
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Table 8.1. Specific heats of various common substances at constant pressure. Except for the last two, they
are measured at room temperature

Specific heat Specific heat

Substance kcal/(kg K) kJ/(kg K) Substance kcal/(kg K) kJ/(kg K)

aluminum 0.21 0.90 sugar 0.27 1.13
copper 0.093 0.39 table salt 0.21 0.88
gold 0.030 0.126 wood 0.42 1.8
acetone (liquid) 0.53 2.22 air 0.25 1.05
ethyl alcohol (liquid) 0.58 2.43 helium (gas) 1.25 5.23
marble 0.21 0.88 water 1.00 4.19
dry leather 0.36 1.5 ice (below 0 ◦C) 0.50 2.09
synthetic rubber 0.45 1.9 liquid nitrogen 0.47 1.97

the volume may increase, or some particles may leave the system. These other
interactions may add or remove energy from the system, so they will influence
the change in temperature. Consequently, the heat capacity of a system depends
on what else is happening.

We identify what else is not happening by subscripts. If y is a parameter that
remains constant as we add the heat, then we define the heat capacity at constant
y as

Cy =
(

∂ Q

∂T

)
y

. (8.13)

For example, the symbol Cp indicates that the pressure is held constant (although
the volume might be changing) and the symbol CV indicates that the volume is
held constant (although the pressure might be changing). We seldom measure
the heat capacities of systems interacting diffusively with their environment, so
the number of particles is assumed to be constant unless otherwise stated. Heat
capacities are not defined at ordinary phase transitions, because the latent heat
added or subtracted causes no change in temperature.

You can see that the heat capacity of a system depends on its size. In order
to raise its temperature by one degree, the ocean requires more heat than does
a teaspoon of water. There are two common measures of heat capacity which
depend only on the materials of a system and not its size. One is the heat capacity
per mole, or molar heat capacity, and the other is the heat capacity per kilogram
or specific heat (capacity) (Table 8.1). We define them as follows. For a system
consisting of n moles of a substance and having total mass m,

molar heat capacity Cy = 1

n
Cy,

(8.14)
specific heat (capacity) cy = 1

m
Cy .
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D Entropy and the third law

As we found in the last chapter and as is stated explicitly in the second law,
entropy plays the central role in controlling the behaviors of systems. The entropy
of any system at temperature T can be determined by integrating equation 8.3
(dS = dQ/T ′) from T ′ = 0 to T ′ = T :

S(T ) = S(0) +
∫ T

0

dQ

T ′ (8.15)

But to evaluate this, we must know the value of S(0) and how to do the integral.
The first is a theoretical matter, answered by the third law of thermodynamics.
The second is an experimental matter. We examine each of these questions in the
following two subsections.

D.1 The entropy at T = 0

As we remove energy from a system, we force it into states of ever decreasing
total energy. As long as there are still some lower-energy states for the system to
fall into, we can continue to remove energy. But eventually, it will reach that one
state of lowest energy5, and that is as far as it can go. At this point � = 1 and so
its entropy is zero. This defines T = 0. Thus

S = k ln � = k ln 1 = 0 (at absolute zero, T = 0).

Notice that this result does not depend on the nature of the system, nor the
size of the box that it is in, nor what pressure it is under, nor the strength of
the magnetic field, nor the number or nature of its particles, etc. No matter what
conditions or constraints the system is held under, there will be one state5 of
lowest energy. And when the system is in that one state, its entropy is zero. This
observation provides us with the “third law of thermodynamics.”

Third law of thermodynamics

The entropy of a system goes to zero as the temperature goes to zero,

S(T = 0) = 0, (8.16)

no matter what the values of the external parameters are.

You may think that the lowest lying state could be degenerate. However, there
seems to be always some form of weak interaction that breaks the degeneracy
at very low energies, leaving one state lower than the others. For this reason, we
will use the above form in this book. You can see that the third law automatically

5 If there were n states all having the very lowest energy, the third law would read S(T = 0) = k ln n =
constant. But the constant would be extremely tiny -- on the order of 10−23 J/K.
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constant pressure vs.
temperature for various
materials, with some
very-low-temperature
behaviors enlarged on the
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takes care of the first of our two concerns regarding determining the entropy of
a system, since S(0) = 0.

D.2 The entropy at finite temperatures

Having solved the first problem, S(0), we now face the second -- how to evaluate

S(T ) = 0 +
∫ T

0

dQ

T ′ . (8.15′)

From the definition of heat capacity (equation 8.13), we can write the heat added
as

dQ = CydT,

so the value of the entropy for temperature T and other parameter values y is

S(T, y) =
∫ T

0

CydT ′

T ′ . (8.17)

For example, suppose we wish to know the entropy S(T, p, N ) for a glass of
water (N = 1025 molecules, which is n = 16.6 moles or m = 0.30 kg) at room
temperature (T = 295 K) and atmospheric pressure (p = 1 atm). So, to evaluate
the integral we would need to know the heat capacity of water at atmospheric
pressure for temperatures from 0 to 295 K. We could either look this up in tables
or measure it ourselves. Examples of measured molar heat capacities (Cp) for
various materials are plotted in Figure 8.3.

You can see that determining a system’s entropy requires some calculation,
as does determining other extrinsic properties, such as energy, volume, or the
number of particles. But it is not difficult, and it certainly beats trying to count
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all the individual quantum states. As an example, we look at the heat released or
absorbed during chemical reactions.

Example 8.2 Consider the chemical reaction A + B → C. Suppose that the
molar heat capacities of the reactants (at constant pressure) in units of J/(mole K)
are CA = 5

√
T , CB = 8

√
T , CC = 12

√
T , where T is in kelvins. If this reaction

is carried out at 300 K, how much heat is absorbed or released if one mole of
substance C is produced?

The heat transfer is given by �Q = T�S. Since we start with reactants A and
B and end with the product C, this change in entropy is given by

�S = Sfinal − Sinitial = SC − (SA + SB)

So we need to know the entropies of SA, SB, SC at 300 K. Using equation 8.17,
we find that the entropy of reactant A at 300 K is

SA(300K) =
∫ 300

0

CAdT

T
= (5 J/K)

∫ 300

0

dT√
T

= 173 J/K.

Similar calculations for the entropies of reactant B and the product C give

SB(300 K) = 277 J/K, SC(300 K) = 416 J/K.

Therefore

�S = SC − (SA + SB) = 416 − (173 + 277) J/K = −34 J/K,

and the amount of heat transferred is

�Q = T�S = (300 K)(−34 J/K) = −10 200 J.

The negative sign indicates that the entropy decreases as heat leaves the system,
(i.e., the reaction is exothermic).

D.3 Heat capacities at low temperatures

Because the integrand in Equation 8.17 has temperature in the denominator, the
integral diverges at zero temperature unless the heat capacity is zero at that point.
Consequently, the heat capacities of all systems must go to zero as the temperature
goes to zero, no matter what (Figure 8.3):

Cy → 0 as T → 0. (8.18)

This result has interesting consequences at low temperatures. A small heat
capacity means that a relatively small amount of added energy will cause a large
increase in temperature, and hours of patient effort to obtain a very low tempera-
ture may be wasted. Low-temperature equipment must be carefully isolated from
very small and seemingly innocent energy sources, such as voices, vibrations



Entropy and thermal interactions 145

from cars outside the building, stray electromagnetic fields in the room, or even
an insect landing on the apparatus.

Summary of Sections B--D

Because the entropy and the number of accessible states are related through

� = eS/k , the factor by which the number of accessible states changes during a

process is (equation 8.12)

� f

�i
= e�S/k = e�Q/kT = e(�E+p�V −µ�N )/kT ,

where the first of these expressions comes from the definition of entropy, the second

from the definition of temperature, and the third from a rearrangement of the first

law.

The heat capacity of a system measures how much heat is required to raise its

temperature by one degree (equation 8.13).

Cy =
(

∂ Q

∂T

)
y

.

The subscript y indicates the parameters held constant as the measurement is being

made. Two common measures that depend on the nature of the substance but not its

size are (equation 8.14)

molar heat capacity Cy = 1

n
Cy

specific heat capacity cy = 1

m
Cy

where n is the number of moles, and m is the mass.

Since the change in entropy dS is equal to dQ/T, the entropy of a system at any

temperature T can be calculated through (equation 8.15)

S(T ) = S(0) +
∫ T

0

dQ

T ′ .

The third law states that the entropy must go to zero at absolute zero (equation 8.16),

because the system must be in that one state of lowest possible energy; i.e.,

S(T = 0) = 0

no matter what the conditions are. Given this and the fact that the heat capacity

relates the heat added, dQ, to the change in temperature dT , we can write the entropy

of a system as a function of temperature T and other parameters y (equation 8.17):

S(T, y) =
∫ T

0

CydT ′

T ′ .

Because entropy is finite, the integral cannot diverge at the zero temperature

limit. Therefore, we know that heat capacities must go to zero at absolute zero

(equation 8.18):

Cy → 0 as T → 0.
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Problems

Section A
1. (a) For a monatomic ideal gas of N molecules, �(E) is proportional to E

raised to what power?
(b) Using equation 8.1 show that, for a monatomic ideal gas of N molecules,

E = (3/2)NkT .
(c) Starting with �(E) = constant × (Etherm)αNν (equations 6.7 and 6.10),

where α is any number, use the definitions of entropy and temperature to
derive the relationship between Etherm and T . (Assume that E = Etherm.)

2. Suppose that there are 1028 diatomic air molecules in a room.
(a) How many degrees of freedom does this system have?
(b) What is the internal energy of this system at room temperature

(295 K)?

3. Two small systems, A1 and A2, are in thermal equilibrium. The number
of states accessible to each increases with its energy according to �1 =
(E1/C)10 and �2 = (E2/C)8, where C = 10−23 J. The total energy of the
combined system is fixed at E0 = E1 + E2 = 10−18 J.
(a) How many degrees of freedom have systems A1 and A2, respectively?
(b) Use the fact that ∂�0/∂ E1 = 0 when �0 is a maximum to find E1 and

E2 when the combined system is in equilibrium.
(c) What is the entropy of the combined system in equilibrium?
(d) Using the definition of temperature, and the fact that in equilibrium the

temperature of either system is the same, find the temperature of the
system.

4. Suppose that you don’t like the way in which the temperature scale is defined,
and you wish to define a scale that gives a nice round number for the value
of Boltzmann’s constant. You measure your temperatures on this scale in ◦R
(for “degrees round”). In units of ◦R, what would be the boiling point of
water if:
(a) k = 1.0 × 10−16 erg/ ◦R?
(b) k = 10−4 eV/ ◦R?
(c) k = 1.0 J/ ◦R?
(d) k = 1.0 eV/ ◦R?

5. What would be the value of Boltzmann’s constant if the temperature of the
triple point (273.16 K) were defined as 100 K? What would be the boiling
point of water on this scale?

6. For a monatomic ideal gas, each molecule has three translational degrees of
freedom only. Suppose you calibrate your temperature scale by saying that
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300 K is defined to be the temperature of a mole of this ideal gas when it has a
thermal energy of 3740 J. What would be the value of Boltzmann’s constant,
k?

7. (a) If you add 20 J of heat to a system at −20 ◦C, what is the change in its
entropy?

(b) By what factor does the number of states accessible to the system
increase?

8. (a) How many joules of heat energy would you have to add to the Pacific
Ocean (average temperature T = 4 ◦C, volume V = 0.70 × 109 km3) to
double the number of states accessible to it?

(b) Would your answer be the same if you were dealing with a cup of water
at 4 ◦C instead?

9. Consider some ice at −1 ◦C in a glass of water at +10 ◦C. For each joule of
heat energy that flows from the water to the ice, find the change in entropy
of (a) the ice, (b) the water, (c) the total system.

10. A 10−2 kg ice cube, initially at 0 ◦C, melts in the Atlantic Ocean, where the
water temperature is 10 ◦C. After melting, the ice melt heats up to match
its 10 ◦C environment. (The latent heat of fusion = 333 J/g and the specific
heat = 4.18 J/(g K). Find the change in entropy of
(a) the water that was originally in the ice cube,
(b) the Atlantic Ocean.
(c) By what factor does the number of states available to the combined

system change?

11. The number of states accessible to an ideal gas having energy in the range
between E and E + δE is given by �0 = constant × V N E3N/2δE, where V
is the volume of the gas and N the number of molecules.
(a) Using equation 8.7, show that pV = NkT .
(b) This is sometimes written as pV = nRT , where n is the number of moles

of the gas and R is called the “gas constant.” What is R in terms of
Boltzmann’s constant and Avogadro’s number?

12. The number of states is expressed as a function of various parameters for
three systems below. For each, find an “equation of state,” which gives the
relationship between p, V, N , and T. (C and b are constants.)
(a) � = CebN V 2

(EV )N ,

(b) � = π
2

(
2
h

)3N
V N/2ebN V E2N ,

(c) � = Ce−b/V 10
E3N .

13. For each system in problem 12, find the dependence of the internal energy E
on V, N, and T.
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14. For each system in problem 12, find the dependence of the chemical potential
µ on E, V, N, and T.

15. Consider two gaseous systems interacting mechanically and thermally but
not diffusively. They are isolated from the rest of the Universe, and their total
volume is fixed at V0.
(a) Show that the total number of accessible states, �0, is a very sensitive

function of the distribution of volume between them. (See equation 6.11
and the argument preceding it for the dependence of � on V.)

(b) Since dV1 = −dV2, show that ∂S1/∂V1 = ∂S2/∂V2 when the systems
are in equilibrium.

(c) From this, what can you conclude about how p1, T1, p2, and T2 are related
in equilibrium?

16. A hundred grams of water are heated from 10 ◦C to 95 ◦C. If the specific heat
of water is 4.19 J/(g ◦C), what is the increase in entropy of the water during
this process?

17. Three hundred grams of aluminum are heated from −50 ◦C to 300 ◦C. If the
specific heat of aluminum is 0.88 J/(g ◦C), what is the change in entropy of
the aluminum?

18. Consider the differentials listed below. For each, state whether it is exact.
For those that are not exact, find a multiplicative factor f (x, y) such that
f (x, y)dF is exact:
(a) dF = 2xdx + (x2/y)dy,
(b) dF = 2xydx + x2dy,
(c) dF = 2xy2dx + x2 ydy,
(d) dF = 3x3 y2dx + x4 ydy,
(e) dF = dx/x + dy/y,
(f) dF = pdV + V dp,
(g) dF = p2dV + pVdp.

19. Estimate the total thermal energy of the following systems at 290 K:
(a) the air in your bedroom (one mole occupies 22.4 liters at 0 ◦C);
(b) the iron atoms in a 5 gram nail (the atomic mass number for iron is

56);
(c) A diamond of mass 0.1 gram (the atomic mass number of carbon is 12);
(d) the Pacific Ocean (0.7 × 109 km3 of water, each molecule having six

degrees of freedom).

20. A system has 1025 degrees of freedom and initial volume 1 m3 and is under a
pressure of 105 N/m2. While held at a constant temperature (assume constant
internal energy) of 17 ◦C, it expands by 1 mm3.
(a) Does the number of accessible states increase or decrease?
(b) By how many times?
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21. In a certain system, the number of accessible states increases by a factor
101020

when 1 joule of energy is added at constant V and N.
(a) What is the increase in entropy, �S?
(b) What is the temperature of the system?

22. Which of the following differentials, dE, dV, dQ, dp, dT, dµ, dN , dW, dS,
are exact? For each that is inexact, find a multiplicative factor involving
E, V, T, p, N , etc. that would make it exact.

23. Suppose that the heat entering a system can be expressed in terms of the
temperature and volume as d Q = b(T 2dV + TVdT ) and that the work done
by the system can be expressed in terms of its pressure and volume as dW =
c(4p4V 2dp + 2p5V dV ), where b and c are constants. Find the multiplicative
factors that turn these inexact differentials into exact ones.

24. Consider a system of 1025 particles at temperature 295 K, pressure 105 Pa,
and chemical potential −0.3 eV. It experiences the following very small
changes: 2.2 × 10−2 J of heat are added, it expands by 10−7 m3 and it gains
1017 particles. What is the change in its (a) internal energy, (b) entropy?

Section B
25. Consider a system at 300 K to which 1 joule of heat is added.

(a) What is its change in entropy?
(b) By what factor does the number of accessible states increase?

26. For any system, the following quantities are all interrelated: the number of
degrees of freedom, Nν, the change in entropy, �S, the ratio of final to initial
thermal energies, Ef/Ei, and the ratio of final to initial states, �f/�i. Below
is a table, each horizontal row representing some process for some system.
Can you fill in the missing numbers?

Nν �S (J/K) E f /Ei � f /�i

1024 1
2 1.01

1.03 101023

1023 1.02

27. (a) By how much does the entropy of the Atlantic Ocean (T = 280 K, V =
0.36 × 109 km3) change when 0.1 joule of heat is added?

(b) What about a cup of water at 280 K?
(c) By what factor does the number of states available to each system

increase?
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28. A system of 1024 particles with µ = −0.2 eV is at room temperature (295
K). Find the factor by which the number of accessible states increases in the
following cases.
(a) The number of particles is increased by 0.01%, without adding energy

to, or doing work on, the system. (That is, the incoming particles
have zero total energy u0 + εtherm = 0, and the system’s volume is un-
changed.)

(b) A single energyless particle is added.

29. A rubber ball is in contact with a heat reservoir that keeps its temperature
constant at 300 K. (So assume that the internal energy is constant.) At a
pressure of 1.001 atm its volume decreases by 10−3 cm3.
(a) What is the change in entropy?
(b) By what factor does the number of accessible states change?
(c) Repeat for a temperature of 20 ◦C, a pressure of 1.02 × 105 Pa, and a

volume reduction of 10−10 m3.

30. A magnet is in contact with a reservoir that keeps it at 300 K. The magnet has
a magnetic moment µz = 10−3 J/T and is sitting in an external field oriented
along the z-axis of strength Bz = 0.1 T. The external field is increased by
1%, and the induced magnetic moment also increases by 1%.
(a) What is the change in entropy?
(b) By what factor does the number of accessible states change?

31. By how much does the entropy of a system increase if the number of accessible
states doubles?

32. Consider 1 m3 of steam held at a temperature of 600 ◦C and a pressure of
50 atm. By how much must its volume expand if the number of accessible
states increases a billionfold?

33. Consider an insulated ideal gas, such that no heat energy can enter or leave.
It is slowly compressed to 96% of its original volume, and its temperature
rises correspondingly.
(a) What is the change in its entropy?
(b) An increase in temperature indicates more thermal motion and larger

momenta. That would imply that the particles have more accessible
room in momentum space with a corresponding increase in number of
accessible quantum states. How, then, can you justify your answer to
part (a)?

34. When one joule of heat energy is added to a system, the number of acces-
sible states increases by a factor of 101019

. What is the temperature of the
system?

35. You have a system of 1024 particles at 300 K. If you hold the volume constant
and add 1019 more perfectly energyless particles, you notice the temperature
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of the system rises slightly, as if you had added 0.4 J of heat. Estimate the
chemical potential for the particles of this system (in eV).

Section C
36. Why can’t heat capacities be defined at ordinary phase transitions?

37. Calculate the change in entropy for 0.24 kg of each of the following as it is
heated from 295 K to 296 K (use Table 8.1): (a) Water, (b) gold, (c) marble,
(d) wood.

38. Which of the above materials would make the most efficient reservoir for the
storage of solar heat? Why do you suppose daily and seasonal temperature
changes are greater inland than on the coast?

39. For a material that expands as its temperature rises, do you think Cp or CV

would be larger? Why?

40. (a) One helium atom has mass 6.7 × 10−27 kg. Estimate the specific heat at
constant volume cV for helium in kJ/(kg K). (Note that if the volume is
constant, no work is done as the heat is added.)

(b) Why does your answer differ from that in Table 8.1?

41. For an ideal gas having a fixed number N of particles, the internal energy
depends only on the temperature and not at all on the volume: E = (ν/2)NkT .
Furthermore, the pressure, volume, and temperature are related by the ideal
gas law, pV = NkT . The first law for a system of a fixed number of particles
reads dE = dQ−pdV . Using this information and the definition of molar
heat capacities, show that (a) CV = (ν/2)R, (b) C p = CV + R, where R =
NAk is the molar gas constant.

Section D
42. (a) If 2000 J of heat are added to 100 g of gold, initially at 0 ◦C, what is the

change in entropy?
(b) By what factor does the number of accessible states increase?

43. Repeat the above problem for 500 g of aluminum.

44. Compute the change in entropy of 1 gram of water as it goes from solid ice
at 0 ◦C to water vapor at 100 ◦C. The latent heat of fusion is 330 J/g and of
vaporization is 2260 J/g.

45. Consider the chemical reaction 2A + B → C. You produce 1 mole of C at
500 K and atmospheric pressure. The molar heat capacities of these sub-
stances at atmospheric pressure are all zero between 0 K and 10 K and
constant above 10 K, being given for T > 10 K by

CA = 19.4 J/(mole K), CB = 35.9 J/(mole K),

CC = 67.7 J/(mole K).
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(a) How much heat will be released in this reaction?
(b) How can the system lose entropy and not violate the second law?

46. Consider the chemical reaction 2A + 2B → C + D. You produce 1 mole
of C at 300 K and atmospheric pressure. How much heat will be released
in this reaction if the molar heat capacities of these substances, in units of
J/(mole K), at atmospheric pressure are as follows?:

CA = 18.6(T/200 K)1/3, CB = 15.7(T/200 K)1/3,

CC = 23.4(T/200 K)1/3, CD = 39.7(T/200 K)1/3.

47. The latent heat of fusion for iron at 1809 K is 246 J/g, or 13 790 J/mole. Its
atomic mass number is 56. In the solid state, each iron atom has six degrees
of freedom, and in the liquid state each has only three.
(a) What is the change in the potential energy reference level, u0, when iron

goes from solid to liquid?
(b) What is the change in entropy per gram?

48. Repeat the above problem, but for the sublimation of dry ice. CO2 has a mass
number of 44 and a latent heat of sublimation of 25 200 J/mole at 194.6 K.
In the solid state there are six degrees of freedom per molecule, but there are
only five in the vapor state. The average work done per molecule in subliming
is pυ = kT, where υ is the volume per molecule.

49. Suppose that the specific heat at constant pressure for ice in units of J/(g K)
were given by 0.2613

√
T from 0 K to 64 K, 2.09 from 64 K to 273 K, and

4.18 from 273 K to 293 K. The latent heat of fusion of ice at 273 K is 333
J/g. Use this information to calculate the entropy of a liter of water at 20 ◦C.
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A Overview

The preceding chapters introduced the fundamental ideas that connect the micro-
scopic and macroscopic behavior of systems. They also gave an overview of the
three types of interactions between systems and how the second law controls
them. These concepts form the statistical basis of thermodynamics, and the tools
are so general that they can be applied to almost any system imaginable. This

155
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is the single most impressive feature of the subject. Unfortunately, it is also the
single most confusing feature of the subject. There are so many different kinds
of systems and such a variety of parameters -- internal energy, temperature, pres-
sure, entropy, volume, chemical potential, number of particles, and many more.
Furthermore, the interdependence among these parameters varies from one sys-
tem to the next and in ways that are usually not specified. Consequently, we
often deal with general and abstract expressions, each involving many parame-
ters whose interrelationships are either vague or unknown.

But the large number of parameters can be turned to our advantage. We don’t
need them all, so we can choose to use whichever we wish and ignore the rest.
Furthermore, their behaviors and interrelationships are heavily constrained. In
this and the following chapters we learn how to make order out of chaos through
a judicious choice of parameters and the application of constraints.

A.1 Parameters and constraints

There is one independent variable for each type of interaction, as we see in the first
law. Because they appear as differentials, we ordinarily choose the independent
variables as follows:

� thermal interaction, the entropy S ;
� mechanical interaction, the volume V ;
� diffusive interaction, the number of particles N .

If a system were simultaneously undergoing several different mechanical inter-
actions

−pdV + B · dµµ + E · dP + · · · ,
or diffusive interactions

µ1dN1 + µ2dN2 + · · · ,
there would be one independent variable for each interaction (V, µµ, P, . . . or N1,

N2, . . . , respectively). For clarity, we use the three standard variables S, V, N ,
where V and N may each represent more than one independent variable if the
system is engaging in more than one type of mechanical or diffusive interaction.

Of the interrelationships between the many parameters, some are universal
and inviolable, applying equally to all systems. We investigate these “natural
constraints” in this chapter. Many other interrelationships depend on the particular
nature of the system. For example, gases behave differently from liquids and
solids, and within each of these groups there are further differences. In Chapter 10
we investigate the use of models to express relationships that vary from one system
to the next.

The first law expresses how a system’s internal energy varies with the entropy,
volume, and number of particles: E = E(S, V, N ). But we may wish to study
other properties and other variables. In Chapter 11 we will learn how to express
any property in terms of whichever variables we wish.
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Table 9.1. Common constraints on systems

Type constraint

adiabatica dQ = 0

isobaric dp = 0

isochoric dV = 0

isothermal dT = 0

nondiffusive or closed dN = 0

a This is equivalent to dS = 0 if the process
is quasistatic.

Individual systems may incur constraints imposed by such things as their natu-
ral environment or our experimental setup. For example, we may do an experiment
at atmospheric pressure ( p = constant), or we might study a system that is neither
gaining nor losing particles (N = constant). Constraints that are imposed upon cer-
tain systems in certain environments are called “imposed constraints.” Table 9.1
lists some of the more common ones. We will learn how to deal with them in
Chapter 12.

Each imposed constraint reduces the number of independent variables by one:
if one variable is held constant, all thermodynamic properties depend on only two
parameters rather than three; if two are held constant then only one independent
variable is left. And if any three parameters are fixed, no property of the system
can change at all. For example, the first law, equation 8.4,

dE = TdS − pdV + µdN ,

expresses the interrelationship between the seven parameters E, T, S, p, V , µ, N ,
of which no more than three are independent. If you hold any two constant then
all seven can be expressed as a function of just one. You can pick whichever you
wish, using the techniques to be described in Chapter 11.

In Chapter 13 we study engines and refrigerators. Engines revolutionized our
society and gave a strong incentive to the study and development of thermo-
dynamics. They offer useful illustrations of the application of constraints, both
natural and imposed. In Chapter 14 we investigate the effects of constraints that
are common in diffusive interactions. The chapter includes an overview of diffu-
sive equilibrium followed by important applications such as osmosis, chemical
equilibrium, and phase equilibrium.

A.2 The focus of this chapter

We now turn our attention to the subject of the present chapter. With such a
great deal of interdependence among the many thermodynamic variables, any
constraint placed on one of them must affect the others. For example, the fact that
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T1 T2

(a)

p1 p2

(b) (c)

m1

m2

Figure 9.1 When two
interacting system are not
yet in equilibrium, which
way will (a) the heat flow,
(b) the piston move, (c)
the particles flow? The
answer to all these lies in
the second law
requirement that the total
entropy must increase.

entropy cannot decrease demands that heat must flow from hot to cold and not vice
versa (Figure 9.1). This is just one of a large number of interrelationships resulting
from the second law’s constraint on the entropy. Likewise, the zeroth, first, and
third laws also impose constraints that result in additional interdependencies. The
laws are inviolate and therefore the resulting interrelationships must apply to all
macroscopic systems and all processes, no matter what. Here we group these
“natural and universal” constraints into five categories according to their origins:

� those arising from Nature’s desire to maximize the entropy (the second law);
� identities (zeroth law);
� those arising from energy conservation (the first law);
� those that must exist in any mathematical expression when there are more parameters

than independent variables (Maxwell’s relations);
� those arising because the entropy goes to zero as T → 0 (the third law).

B Second law constraints

The second law requires that when interacting systems are at equilibrium, their
total entropy is a maximum. In this section we will demonstrate that this demands
the following universal and inviolable behaviors of all systems, regarding their
(a) thermal, (b) mechanical, and (c) diffusive interactions.

1. As two interacting systems approach equilibrium,

(a) heat flows toward the system with the lower temperature, (9.1a)

(b) boundaries move toward the system with the lower pressure, (9.1b)

(c) particles flow toward the system with lower chemical potential. (9.1c)

2. After two interacting systems have reached equilibrium,

(a) their temperatures are equal, (9.2a)

(b) their pressures are equal, (9.2b)

(c) their chemical potentials are equal. (9.2c)

3. When heat, volume, or particles (�Q, �V , �N) are transferred, one of these by itself

with the other two held constant, the following must be true:

(a) �T�Q > 0 (if heat is added, the temperature must rise); (9.3a)

(b) �p�V < 0 (if the volume is increased, the pressure must fall); (9.3b)

(c) �µ�N > 0 (if particles are added, the chemical potential must rise). (9.3c)
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A1

A2

∆N

∆Q

∆V

Figure 9.2 When
systems A1 and A2 are
interacting thermally,
mechanically, and
diffusively, any energy,
volume, or particles
gained by one of them
must come from the
other. The volume change
�V during the interaction
is shaded. According to
the second law, the
entropy of the combined
system must be a
maximum when it
reaches equilibrium.All these results are simply “common sense” to us, because we live in a world

in which the second law rules. The reason for deriving these results here is to
point out how much of our “common sense” world is governed by just one simple
idea -- the second law.

B.1 Approaching equilibrium

To derive the above results, we consider the general interaction shown in
Figure 9.2. An isolated system, A0, is composed of two interacting subsystems,
A1 and A2. We are interested in the change in entropy of the combined system,

dS0 = dS1 + dS2 = dQ1

T1
+ dQ2

T2
, (9.4)

and we express dQ2 in terms of the changes dQ1, dV1, dN1 in system 1.1

Any energy, volume, and/or particles gained by one subsystem come from the
other:

dE2 = −dE1, dV2 = −dV1, dN2 = −dN1. (9.5)

The first of these relationships (dE2 = −dE1) can be rewritten using the first
law:

dQ2 − p2dV2 + µ2dN2 = −(dQ1 − p1dV1 + µ1dN1).

We solve for dQ2, replacing dV2 and dN2 by −dV1 and −dN1, respectively:

dQ2 = −dQ1 + (p1 − p2)dV1 − (µ1 − µ2)dN1. (9.6)

We now substitute this expression for dQ2 into equation 9.4 to get an expression

1 In Chapter 5 we learned that the differential dQ is not exact because Q is not a function of state,

making it quite different from E, V, and N. So we have to be careful, employing the first law to

ensure that we don’t leave anything out.
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for the change in total entropy, dS0, in terms of the changes dQ1, dV1, dN1 in
system 1:

dS0 = 1

T2

[(
T2 − T1

T1

)
dQ1 + (p1 − p2) dV1 − (µ1 − µ2) dN1

]
. (9.7)

This is the expression we want. We will now derive from it the results 9.1, 9.2,
and 9.3.

First, imagine that the two interacting subsystems are not yet in equilibrium
(Figure 9.1). The second law dictates that the entropy of the combined system
must increase,

dS0 > 0 (approaching equilibrium).

The three terms on the right-hand side of equation 9.7 must each individually
obey the inequality, because the changes dQ, dV, dN are independent; for example,
the systems could be interacting only thermally, or only mechanically, or only
diffusively. The result is the first set (9.1a--c) of promised results.

(a) If the two are interacting thermally, then [(T2 − T1)/T1] dQ1 > 0. That is, heat must

flow toward the lower temperature (e.g., dQ1 > 0 if T2 > T1).

(b) If the two are interacting mechanically, then (p1 − p2) dV1 > 0. That is, boundaries

must move toward the lower pressure (e.g., dV1 > 0 if p1 > p2).

(c) If the two are interacting diffusively, then −(µ1 − µ2) dN1 > 0. That is, particles must

flow towards the lower chemical potential (e.g., dN1 > 0 if µ1 < µ2).2

B.2 At equilibrium

An important corollary applies to two systems that have reached equilibrium.
Because the entropy is a maximum, it remains unchanged with small changes in
the variables:

dS0 = 0 (at equilibrium).

Again, the three terms in equation 9.7 are independent. Setting each term indi-
vidually equal to zero gives the second set (9.2a--c) of the promised results: for
two systems in thermal, mechanical, and diffusive equilibrium, respectively,

T2 = T1, p2 = p1, µ2 = µ1.

B.3 Second order constraints

Now we examine second-law constraints on second derivatives. At a function’s
maximum, the first derivative in any variable is zero but the second derivative is

2 Often there are many different particles and their transfer from one system to another is not one to

one (e.g., chemical reactions). Following through the above development with each type of particle

in each system labeled separately, the condition becomes µ1dN1 + µ2dN2 + µ3dN3 + · · · < 0.
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maximum

f (x, y)

Figure 9.3 When a
differentiable function is
at its maximum, the first
derivative with respect to
any variable is zero, and
the second derivative is
negative (f ′ = 0 and
f ′′ < 0).

negative (Figure 9.3). Hence when two interacting systems are displaced slightly
from equilibrium, the resulting change in entropy must be negative:

�S0 = �S1 + �S2 < 0 (if displaced away from equilibrium).

To reveal the implications, we begin with two systems in equilibrium at tem-
perature T, pressure p, and chemical potential µ. We then transfer either a small
amount of heat, volume, or particles (�Q, �V , or �N) from one to the other.
To keep the mathematics simple, we consider system 2 to be a huge reservoir, so
that its temperature, pressure, and chemical potential remain unchanged. We take
system 1 to be much smaller, so that the transfer may cause a noticeable change
�T , �p, or �µ.3 During the transfer, then, the average temperature, pressure, or
chemical potential for the two systems would be: for the small system A1,

T1 = T + �T

2
, p1 = p + �p

2
, µ1 = µ + �µ

2
, (9.8)

and for the huge reservoir, A2,

T2 = T, p2 = p, µ2 = µ.

If we put these values into equation 9.7 for the change in total entropy and use
(1 + ε)−1 ≈ 1 − ε (with ε = �T/2T in the heat transfer term), we get

�S0 = 1

2T

(
−�T �Q

T
+ �p�V − �µ�N

)
< 0. (9.9)

This tells us immediately that for the small system, if we allow only one type of

3 If we allowed only one type of interaction at a time, there would indeed be change �T , �p, or

�µ even at phase transitions. You might think of freezing water, where you remove heat and the

temperature does not change. But it expands, so it is undergoing both thermal and mechanical

interactions. If you did not allow it to expand, its temperature would indeed fall as heat is removed.
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(a) (b) (c)

T1 T2

p1 p2

m1

m2

∆Q
∆V

∆N

Figure 9.4 For thermal,
mechanical, or diffusive
interactions, the second
law guarantees the
following. (a) Heat flows
from hot to cold; as a
result, the higher
temperature falls and the
lower temperature rises.
(b) The piston moves
from high pressure
toward low. As a result,
the higher pressure falls
and the lower pressure
rises. (c) Particles flow
from high chemical
potential to low. As a
result, the higher
chemical potential falls
and the lower one rises.
That is, all changes are in
the direction that
approaches equilibrium.

interaction at a time, we get the third set (9.3a--c) of promised results:

(a) �T�Q > 0 (e.g., if heat is added, the temperature must rise);

(b) �p�V < 0 (e.g., if the volume is increased, the pressure must fall);

(c) �µ�N > 0 (e.g., if particles are added, the chemical potential must rise).

Although we have used a reservoir to simplify our calculations, these interrela-
tionships must in fact hold for any interacting systems, because the amount of
heat, volume, or particle transfer (�Q, �V , or �N) does not depend on where it
comes from.

Results 9.1 and 9.3 tell us that when systems are interacting, the transfer of
heat, volume, and or particles must bring their temperatures, pressures, and/or
chemical potentials closer to equilibrium (Figure 9.4). In thermal interactions,
for example, heat must flow from hot to cold. As it does, the hotter system
cools off and the cooler one warms up until their temperatures are equal. The
same happens to pressures in mechanical interactions and chemical potentials in
diffusive interactions.

B.4 Fluctuations

We now examine fluctuations in any one property χ (e.g., T, p, V, N, E, etc.) for
a system in equilibrium with a large reservoir. We are free to choose whichever
three independent variables we wish, but we must specify the two that are being
held constant while fluctuations in the third are being studied. We begin by noting
that the probability for any particular configuration is proportional to the number
of accessible states (equations 6.2, 7.11):

P ∝ � = eS0/k,

where S0 is the total entropy of the combined system (S0 = S + SR, where SR is
the entropy of the reservoir). We expand S0 in a Taylor series expansion for small
displacements �χ from equilibrium:

S0 = S0,max + ∂S0

∂χ

∣∣∣∣
max

�χ + 1

2

∂2 S0

∂χ 2

∣∣∣∣
max

(�χ )2 + · · · .
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If we ignore the higher-order terms, note that the first derivative of S0 is zero when
in equilibrium (i.e., S0 is a maximum), and incorporate a factor exp(S0,max/k)
into the constant of proportionality, the probability for a fluctuation �χ is then
given by

P ≈ C exp

(
1

2k

∂2 S0

∂χ 2

∣∣∣∣
max

(�χ)2

)
.

We recognize this as the familiar Gaussian form (3.7)--(3.10), which we can
write as

P(�χ) = 1√
2πσ

e−�χ2/2σ 2
, where

1

σ 2
= −1

k

∂2 S0

∂χ 2

∣∣∣∣
max

. (9.10)

To illustrate this result, we look at the fluctuations in energy, volume, or num-
ber of particles (�E, �V , or �N) for a system in equilibrium with a reservoir. We
can write the entropy in terms of these variables using the first law in the form 8.6.
Because energy, volume, and particles are conserved (i.e., dER = −dE, dVR =
−dV, dNR = −dN ), the change in entropy of the combined system is

dS0 = dS + dSR =
(

1

T
− 1

TR

)
dE +

(
p

T
− pR

TR

)
dV −

(
µ

T
− µR

TR

)
dNR.

From this, we see that the first derivatives with respect to our chosen variables are

∂S0

∂ E
=

(
1

T
− 1

TR

)
,

∂S0

∂V
=

(
p

T
− pR

TR

)
,

∂S0

∂ N
= −

(
µ

T
− µR

TR

)
.

The second derivatives are found by noting that the reservoir is very large, so
that TR, pR, µR are constants, unaffected by small transfers of energy, volume,
or particles. Hence

∂2 S0

∂ E2
=

(
∂

∂ E

(
1

T

))
V,N

,
∂2 S0

∂V 2
=

(
∂

∂V

( p

T

))
E,N

,
∂2 S0

∂ N 2
= −

(
∂

∂ N

(µ

T

))
E,V

.

Consequently, for any system in thermal, mechanical, or diffusive equilibrium
with a large reservoir, the probabilities for fluctuations in its internal energy, vol-
ume, or number of particles are given by equation 9.10, with standard deviations

1

σ 2
E

= −1

k

(
∂

∂ E

(
1

T

))
V,N

,
1

σ 2
V

= −1

k

(
∂

∂V

( p

T

))
E,N

,

1

σ 2
N

= 1

k

(
∂

∂ N

(µ

T

))
E,V

. (9.11a)

To evaluate these, we could use experimental data (e.g., on how 1/T varies as
small amounts of energy �E are added), or we could use a model that interrelates
the appropriate parameters. For example, in a standard model (Section 4F), E and
T are related through

E = constant + Nν

2
kT ⇒ 1

T
= Nν

2 (E − constant)
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and, from this, equation 9.11a yields

σE =
√

Nν

2
kT, (9.11b)

a result we have seen before (equation 7.7). For an ideal gas, with pV = NkT ,
evaluation of equation 9.11a for σV and σN gives (homework)

σV = V√
N

, σN =
√

N (ideal gas). (9.11c)

For all three, we notice the familiar result that the relative fluctuations decrease
as the square root of the system’s size:

σE

E
= 1√

Nν
/

2
,

σV

V
= 1√

N
,

σN

N
= 1√

N
. (9.11d)

Summary of Section B

For two mutually interacting systems, we can write the change in entropy of the

combined system in terms of the changes in system 1 (equation 9.7):

dS0 = 1

T2

[(
T2 − T1

T1

)
dQ1 + (p1 − p2) dV1 − (µ1 − µ2) dN1

]
.

The second law has the following requirements for systems interacting (a) thermally,

(b) mechanically, or (c) diffusively:

1. As two interacting systems approach equilibrium (equations 9.1):

(a) heat flows toward the lower temperature;

(b) boundaries move toward the lower pressure;

(c) particles flow toward the lower chemical potential.

2. After two interacting systems have reached equilibrium (equations 9.2)

(a) their temperatures are equal;

(b) their pressures are equal;

(c) their chemical potentials are equal.

3. When heat, volume, or particles (�Q, �V , �N) are transferred, one of these by itself with

the other two held constant, it must have the following effect (equations 9.3)

(a) �T�Q > 0 (if heat is added, the temperature must rise);

(b) �p�V < 0 (if volume is increased, the pressure must fall);

(c) �µ�N > 0 (if particles are added, the chemical potential must rise).

The results 9.1 and 9.3 guarantee that interacting systems will converge toward

equilibrium rather than diverging away from it.

When a system is interacting purely thermally, mechanically, or diffusively with

a large reservoir, fluctuations in its internal energy, volume, or number of particles

(or any other parameter) may be calculated from the following probability
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distributions (9.10):

P(�χ) = 1√
2πσ

e−�χ2/2σ 2
, where

1

σ 2
= −1

k

∂2 S0

∂χ 2

∣∣∣∣
max

.

The respective standard deviations for a system interacting with a reservoir are

given by (9.11a)

1

σ 2
E

= −1

k

(
∂

∂ E

(
1

T

))
V,N

,
1

σ 2
V

= −1

k

(
∂

∂V

( p

T

))
E,N

,

1

σ 2
N

= 1

k

(
∂

∂ N

(µ

T

))
E,V

.

The value of these depends on the system. For example, we find that (9.11b--d)

in the general case, σE =
√

Nν

2
kT;

for an ideal gas, σV = V√
N

, σN =
√

N .

C Thermometers and gauges

The results 9.1, 9.2, and 9.3 make gauges possible. When a system interacts with
a gauge, the two exchange heat, volume, or particles until they reach equilibrium.
At that point, the temperature, pressure, or chemical potential of the gauge is the
same as that of the system. Therefore, we only need to calibrate one system -- the
gauge -- and then we can use it to measure the temperature, pressure, or chemical
potential of everything else.

The choice of an appropriate gauge generally involves a compromise over
concerns of convenience, price, size, accuracy, and range of utility. We prefer a
gauge that is small, because we want to minimize its impact on the system whose
properties we are measuring.

Gauges to measure pressure and chemical potential are calibrated in direct
comparison with metric standards of mass, length, and time, because their units
are newtons per square meter and joules, respectively. Temperature is different,
however. Equations 8.1 (1/T = (∂S/∂ E)V,N ) and 7.10 (S = k ln �) define the
combination kT : (kT = (∂ E/∂ ln �)V,N ) in terms of the measurable quantities �

and E and give it units of energy. For either k or T to have individual significance
requires a further definition. This is accomplished by defining the triple point
for water to be at temperature 273.16 K (Figure 9.5).4 These two definitions of
kT and T also determine the value of the constant k. Figure 9.5 also shows a
comparison of the three most common temperature scales.

4 The triple point is produced by reducing the pressure on liquid water until it begins to freeze and

boil simultaneously. This happens at a pressure of about 0.006 atm, or 600 N/m2.
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Figure 9.5 (Left) A plot
of the boiling and freezing
points of water (horizontal
axis) as a function of the
pressure (vertical axis).
The area around the triple
point (T = 273.16 K, p =
0.006 atm) is enlarged.
The lines trace the locus
of points (T, p) at which
the two respective phases
are in equilibrium. (Right)
A comparison of Kelvin,
Celsius, and Fahrenheit
temperature scales.

D Zeroth law constraints

An algebraic theorem states that if T1 = T2 and T2 = T3 then T1 = T3. This is
the original “zeroth law of thermodynamics.” Just as equal temperatures indicate
thermal equilibrium, equal pressures indicate mechanical equilibrium, and equal
chemical potentials indicate diffusive equilibrium. The same algebraic theorem
can also be applied to these. Consequently, a broader statement of the zeroth law
is:

Zeroth law of thermodynamics

If two systems are each in thermal, mechanical, and/or diffusive equilibrium with a

third system, then they are in thermal, mechanical, and/or diffusive equilibrium,

respectively, with each other.

One consequence is that we can use gauges to tell whether two systems are in
equilibrium, without having to bring the two together.

Summary of Sections C and D

The second law requires that heat, volume, and/or particles be transferred between

appropriately interacting systems until their temperatures, pressures, and/or

chemical potentials are equal. This makes gauges possible. In each case, all we need

is one small calibrated system, and then we can use it to measure the temperature,

pressure, or chemical potential of any other system.
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Standards for pressure and chemical potential already exist in the metric

standards for mass, length, and time. Temperature is different, however, because

only the combination kT has physical significance. So the value of Boltzmann’s

constant depends on the temperature scale. The “absolute” scale of temperature is

established by defining the triple point of water to be 273.16 K exactly.

The zeroth law of thermodynamics states that if two systems are each in thermal,

mechanical, and/or diffusive equilibrium with a third system, then they are in

thermal, mechanical, and/or diffusive equilibrium, respectively, with each other.

E First law constraints

The first law (dE = T dS − pdV + µdN ) interrelates changes in E, S, V, and N.
We can express this interrelationship in alternative ways that are sometimes quite
useful.

E.1 The integrated internal energy

All the differentials in the first law involve extrinsic variables. If we divide a
system up into a myriad of tiny pieces, as in Figure 9.6, the total energy, entropy,
volume, and number of particles for the system are each the sum of the parts.
For a system in equilibrium, the temperature, pressure, and chemical potential
(T, p, µ) are the same throughout. Therefore we can construct a system by adding
together all its parts, using the first law to calculate the change in internal energy
as the ith part is added on:

E =
∑

i

�Ei =
∑

i

(T�Si − p�Vi + µ�Ni ) = T S − pV + µN . (9.12)

(∆Ei, ∆Si, ∆Vi, ∆Ni) Etotal = Σ ∆Ei
i

Stotal = Σ ∆Si
i

Vtotal = Σ ∆Vi
i

Ntotal = Σ ∆Ni
i

1 2 3 4 5

1

Figure 9.6 If we divide a
system into a myriad of
little pieces, the total
energy, entropy, volume,
and number of particles
are sums of those from
the individual pieces. We
can use the first law to
write the system’s total
internal energy as the
sum of the contributions
from the pieces.
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E.2 Changes in chemical potential

If systems are interacting, changes in the internal energy of one of them can be
calculated by writing down the differential of result 9.12:

dE = T dS + SdT − pdV − V dp + µdN + Ndµ. (9.12′)

Comparing this with the first law (dE = T dS − pdV + µdN ) yields the follow-
ing relationship between changes in the three intrinsic variables:

SdT − V dp + Ndµ = 0

or
Ndµ = −SdT + V dp (Gibbs–Duhem equation) (9.13)

Notice that none of the intrinsic variables T, p, or µ can change all by itself.
If two remain constant, so does the third. And the changes in any one can be
determined from the measured changes in the other two.5 If there were two or
more kinds of particle, this would become∑

i

Ni dµi = −SdT + V dp. (9.13′)

F Thermodynamic potentials

We now introduce three more functions, all of which have units of energy
and are defined in terms of parameters that we have considered already. In
this sense, they are not new; in fact, they are superfluous. However, they are
often convenient and useful for the study of common isothermal and/or isobaric
(constant-pressure) processes, into which they bring the authority of the second
law. Together with the internal energy, they are called the thermodynamic poten-
tials. Their definitions and mathematical properties are summarized in Table 9.2.

F.1 Definitions and differential forms

We name and define these special energy functions as follows:

Helmholtz free energy, F ≡ E − T S; (9.14a)

enthalpy, H ≡ E + pV ; (9.14b)

Gibbs free energy, G ≡ E − T S + pV . (9.14c)

If we put into these expressions the integrated internal energy from equation 9.12,
we have these alternative forms:

Helmholtz free energy, F = −pV + µN ; (9.14a′)

enthalpy, H = T S + µN ; (9.14b′)

Gibbs free energy, G = µN . (9.14c′)

5 How does this square with our assertion that there are three independent variables? There are

only two independent intrinsic variables, because they cannot completely describe the system. For

example, they cannot tell us the system’s size. Hence, at least one extrinsic variable is needed.
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Table 9.2. Thermodynamic potentials, defined in terms of the internal energy
E = TS − pV + µN, with dE = T dS − pdV + µdN

Helmholtz free energy F Enthalpy H Gibbs free energy G

‘‘work function” ‘‘heat function” ‘‘Gibbs function”
F ≡ E − TS H ≡ E + pV G ≡ E − TS + pV

= −pV + µN = TS + µN = µN

dF = −SdT − pdV + µdN dH = T dS + V dp + µdN dG = −SdT + V dp + µdN

if T constant, F = min if p constant, H = max if T, p constant, G = min

if T, N constant, dF = −pdV if p, N constant, dH = T dS if T, p constant, dG = µdN

If we take the differential of the Helmholtz free energy 9.14a, we get

dF = dE − T dS − SdT .

Then, using the first law for dE , we get the differential form

dF = −SdT − pdV + µdN . (9.15a)

Doing the same for the enthalpy and the Gibbs free energy gives

dH = T dS + V dp + µdN , (9.15b)

dG = −SdT + V dp + µdN . (9.15c)

F.2 Helmholtz free energy

The Helmholtz free energy can be useful in the analysis of isothermal processes, as
we will now see. Consider two systems (A0 = A1 + A2, see Figure 9.2) interacting
mechanically and diffusively but held at constant temperature. For each, the
change in Helmholtz free energy is given from equation 9.15a by

dF = −pdV + µdN (isothermal, dT = 0). (9.16a)

Since the volume and particles gained by one are lost by the other,

dV2 = −dV1, dN2 = −dN1,

we can write the total change in F as

dF0 = dF1 + dF2 = −(p1 − p2)dV1 + (µ1 − µ2)dN1.

The second law requires volume to be gained by the system with greater
pressure, and particles to flow towards smaller chemical potentials. Therefore

−(p1 − p2)dV1 ≤ 0, (µ1 − µ2)dN1 ≤ 0 ⇒ dF0 ≤ 0.

That is, for systems interacting isothermally the second law demands that
changes in their Helmholtz free energy must be negative, reaching a minimum at
equilibrium.
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From the differential form 9.15a, you can see that if the process is both isother-
mal and nondiffusive (dT = dN = 0), the Helmholtz free energy measures the
work done:

dF = −pdV (isothermal, nondiffusive).

For this reason, it is sometimes called the work function.

F.3 Enthalpy

The enthalpy can be useful in the analysis of isobaric processes, as we will
now see. Consider two systems interacting thermally and diffusively but held at
constant pressure. For each, the change in enthalpy is given by equation 9.14b:

dH = dE + pdV (isobaric, dp = 0). (9.16b)

Since the energy or volume gained by one comes from the other,

dE2 = −dE1, dV2 = −dV1,

the change in enthalpy for the combined system can be written as

dH0 = 0 + (p1 − p2)dV1.

The second-law constraint 9.1b requires the term on the right to be positive
when approaching equilibrium (i.e., volume is gained by the system under higher
pressure):

dH0 ≥ 0.

Consequently, as systems approach equilibrium under isobaric conditions,
changes in their enthalpy must be positive, reaching a maximum at equilibrium.

According to equation 9.15b, for processes that are nondiffusive as well as
isobaric (dp = dN = 0), the enthalpy measures the heat transfer:

dH = T dS (isobaric and nondiffusive, dp = d N = 0).

For this reason, it is sometimes called the heat function. In Chapter 13 we will
learn that enthalpy measurements are particularly useful for analyzing engine
performance, revealing the amount of heat exchanged or the work done in various
parts of a cycle.

F.4 Gibbs free energy

Finally, the Gibbs free energy is relevant in a wide variety of diffusive processes
that reach equilibrium under isothermal and isobaric constraints (dT = dp = 0).
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Consider two systems interacting diffusively. According to equation 9.15c, the
change in Gibbs free energy for either system is6

dG = µdN (isothermal and isobaric, dT = dp = 0). (9.16c)

Since particles gained by one are lost by the other (dN2 = −dN1), the change in
Gibbs free energy for the combined system is

dG0 = dG1 + dG2 = (µ1 − µ2)dN1 (isothermal, isobaric)

The second law requires that particles are gained by the system with the lower
chemical potential, so the term on the right must be negative for systems approach-
ing equilibrium; thus

dG0 ≤ 0 (isothermal and isobaric).

That is, when a system is in diffusive equilibrium its Gibbs free energy is a
minimum for that particular temperature and pressure.

We will often be interested in diffusive equilibrium between systems involving
different kinds of particles with different chemical potentials. In these cases, the
Gibbs free energy is the sum over all the different types of particles,

G =
∑

i

µi Ni , (9.14c′′)

and the condition that G must be a minimum at equilibrium is

�G =
∑

i

µi�Ni = 0 at equilibrium (T, p constant). (9.17)

Summary of Sections E and F

We can integrate the first law to find (equation 9.12)

E = TS − pV + µN .

Comparing the differential of this with the first law, we find that (equation 9.13)

Ndµ = −SdT + V dp,

which tells how changes in the three intrinsic parameters µ, T, p are interrelated.

Thermodynamic potentials can be useful for certain isothermal and/or isobaric

processes. Their definitions, differential forms, properties, and alternative names are

given in Table 9.2.

6 According to equation 9.14c′, the differential of G = µN is dG = µdN + Ndµ, which seems to

have an extra term Ndµ compared with the expression 9.16c. However, dµ = 0 if temperature and

pressure are fixed (equation 9.13), so in this case the two expressions are the same.
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G Maxwell’s relations

G.1 Derivation

We are now going to examine the interrelationships between the many variables
that must exist because no more than three of them are independent. We expose
these interrelationships by exploiting the fact that the differentials dE, dF, dH,
dG are exact. You remember that a differential is exact if you can find a function
whose differential it is. We have already obtained these functions in the previous
section (9.12, 9.14a, b, c):

E = T S − pV + Nµ,

F = E − T S,

H = E + pV,

G = E − T S + pV .

The property that we shall now use for each of these functions is illustrated
as follows. Suppose that w is a function of (x, y, z) : w = w(x, y, z). Then its
differential is given by

dw = f dx + gdy + hdz, (9.18)

where

f =
(

∂w

∂x

)
y,z

, g =
(

∂w

∂y

)
x,z

, h =
(

∂w

∂z

)
x,y

.

Using the property that for exact differentials

∂2w

∂y∂x
= ∂2w

∂x∂y
,

we get (
∂ f

∂y

)
x,z

=
(

∂g

∂x

)
y,z

. (9.19a)

The corresponding relationships for the pairs of variables (x, z) and (y, z) are(
∂ f

∂z

)
x,y

=
(

∂h

∂x

)
y,z

and

(
∂g

∂z

)
x,y

=
(

∂h

∂y

)
x,z

. (9.19b, c)

We now apply this to our thermodynamic potentials, whose differential forms
are (equations 8.4, 9.15a, b, c):

dE = T dS − pdV + µdN (independent variables S, V, N );

dF = −SdT − pdV + µdN (independent variables T, V, N );

dH = T dS + V dp + µdN (independent variables S, p, N );

dG = −SdT + V dp + µdN (independent variables T, p, N ).
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Each of these is of the form 9.18, and so we can apply equations 9.19a, b, c to it.
Altogether, this gives the 12 interrelationships listed in Table 9.3. The four that
apply to the common case of nondiffusive interactions (N = constant) are given
in the left-hand column.

G.2 Meaning

Each of the 12 Maxwell’s relations relates a variation in one property to a variation
in another. Thus they offer us several different ways to measure the change in a
parameter, so we can choose the option that is most convenient for us. (More on
this in Chapter 11.) All must be true for all systems, and they are a consequence
of there being many more parameters than independent variables. Each partial
derivative is simply related to some easily measured property of the system. Many
are tabulated in handbooks in the form of coefficients for volume expansion,
compressibilities, heat capacities, etc., and others can be measured directly. For
example, temperature and pressure are given by equation 8.7:

T =
(

∂ E

∂S

)
V,N

, p = T

(
∂S

∂V

)
E,N

.

Thermometers and pressure gauges are common tools, and their measure gives
us the corresponding partial derivatives. In principle, you could devise gauges
or equipment to measure the quantities in all the other differential relationships
appearing in Maxwell’s relations.

It is interesting to think in more detail about how the various partial differentials
are obtained (Figure 9.7). For example, in equation M1 in Table 9.3 we would

Figure 9.7 An apparatus
for measuring the ratios
of variations in Maxwell’s
relations, illustrating that
we can easily measure
�Q, �T, �p, �V, and �N.
How would we then
determine �S or �µ?
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Table 9.3. Maxwell’s relations, labeled “M1” through “M12.” In the main
text, the three relations in the first row are labeled M1--M3, those in the
second row M4--M6, those in the third row M7--M9, and those in the fourth row
M10--M12. The three relations on each line are derived from the given
thermodynamic potential with the three independent variables indicated.
In the left-hand column, all four apply to nondiffusive interactions (N =
constant). In the center column, two apply to adiabatic processes (S = constant)
and two to isothermal processes (T = constant). In the right-hand column, two
apply to isochoric processes (V = constant) and two to isobaric processes
(p = constant)

Derived from internal energy, E(S, V, N ):(
∂T

∂V

)
S,N

= −
(

∂p

∂S

)
V,N

, −
(

∂p

∂ N

)
S,V

=
(

∂µ

∂V

)
S,N

,
(

∂T

∂ N

)
S,V

=
(

∂µ

∂S

)
V,N

Derived from Helmholtz free energy, F(T, V, N ):(
∂S

∂V

)
T,N

=
(

∂p

∂T

)
V,N

, −
(

∂p

∂ N

)
T,V

=
(

∂µ

∂V

)
T,N

, −
(

∂S

∂ N

)
T,V

=
(

∂µ

∂T

)
V,N

Derived from enthalpy, H (S, p, N ):(
∂T

∂p

)
S,N

=
(

∂V

∂S

)
p,N

,
(

∂V

∂ N

)
S,p

=
(

∂µ

∂p

)
S,N

,
(

∂T

∂ N

)
S,p

=
(

∂µ

∂S

)
p,N

Derived from Gibb’s free energy, G(T, p, N ):

−
(

∂S

∂p

)
T,N

=
(

∂V

∂T

)
p,N

,
(

∂V

∂ N

)
T,p

=
(

∂µ

∂p

)
T,N

, −
(

∂S

∂ N

)
T,p

=
(

∂µ

∂T

)
p,N

need to measure how temperature varies with volume (�T/�V ) in adiabatic
expansions for which S is constant, or how pressure varies as heat is added
(�p/�S with �S = �Q/T) in isochoric processes, for which V is constant.
Common means of measuring the changes in the six parameters that appear in
Maxwell’s relations are as follows:

� �T , thermometer
� �V , meter sticks, graduated cylinder, cylinder with movable piston, etc.
� �p, pressure gauge
� �S, heat transfer divided by temperature, �Q/T , where �Q might be measured by heat

capacities and change in temperature, �Q = C�T
� �N , mass balance.
� �µ, voltmeter, or a thermometer and pressure gauge using equation 9.13.
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Summary of Section G

One way to express the interdependence of the many different thermodynamic

variables is to use the fact that the changes in internal energy, Helmholtz free energy,

enthalpy, and Gibbs free energy of a system are exact differentials (equations 8.4,

9.15a--c):

dE = T dS − pdV + µdN (independent variables S, V, N )

dF = −SdT − pdV + µdN (independent variables T, V, N )

dH = T dS + V dp + µdN (independent variables S, p, N )

dG = −SdT + V dp + µdN (independent variables T, p, N )

Each of these are of the form (equation 9.18):

dw = f dx + gdy + hdz,

where

f =
(

∂w

∂x

)
y,z

, g =
(

∂w

∂y

)
x,z

, h =
(

∂w

∂z

)
x,y

.

Using the property that for exact differentials

∂2w

∂x∂y
= ∂2w

∂y∂x
,

we get (equations 9.19a--c)(
∂ f

∂y

)
x,z

=
(

∂g

∂x

)
y,z

,

(
∂ f

∂z

)
x,y

=
(

∂h

∂x

)
y,z

,

(
∂g

∂z

)
x,y

=
(

∂h

∂y

)
x,z

Applying these to each of the four exact differentials above, we get the 12

Maxwell’s relations listed in Table 9.3. Each tells us how a variation in one

parameter is related to a variation in another. Most involve easily measured

properties of the system. As we will learn in Chapter 11, Maxwell’s relations give us

flexibility in choosing parameters to measure in studying the properties of a system.

H The third law and degenerate systems

H.1 Behaviors at absolute zero

We now examine behaviors near absolute zero. At T = 0 a system is in the very
lowest state possible, and this has two important implications:

� its entropy is zero (the third law, see Section 8D and footnote 5) and
� no more energy can possibly be extracted from it.

The vanishing entropy is independent of all other factors, such as pressure, vol-
ume, or number of particles. The fact that the entropy is fixed means that it does
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not change with V , N , or p:

(
∂S

∂V

)
T =0

=
(

∂S

∂ N

)
T =0

=
(

∂S

∂p

)
T =0

= 0. (9.20)

These might seem surprising. The entropy measures the number of accessible
states. Shouldn’t this number increase if you increase the accessible volume dV
in coordinate space or decrease if you further constrain it by an increase dp in
pressure? Wouldn’t more particles (dN) give it more ways of rearranging itself?
Apparently not. We will see why this is so.

Through the Maxwell relations M4, M6, M10, and M12, equations 9.20 imply
that the following are also true for a closed system (N = constant) at T = 0:

(
∂V

∂T

)
p

=
(

∂µ

∂T

)
p

=
(

∂p

∂T

)
V

=
(

∂µ

∂T

)
V

= 0. (9.20′)

When heated at absolute zero (giving rise to an increase dT), the system neither
expands (dV = 0) nor undergoes an increase in pressure (dp = 0). And heating
causes no change in the particles’ propensity to enter or leave the system (dµ = 0).

H.2 Quantum effects and degenerate systems

Some interesting and important quantum effects are observed near absolute zero.
In subsection 1B.6 we learned that a particle’s spin angular momentum about any
axis can be described in terms of integer multiples of h for bosons, and odd-half-
integer multiples of h for fermions. An important consequence of this behavior
under rotation is that no two identical fermions (“identical includes identical
spin orientations) may occupy the same quantum state, whereas any number of
identical bosons can do so.

Any system of particles near absolute zero is said to be “degenerate” if all the
particles are occupying the quantum states of lowest possible energy. Since all
bosons can be in the ground state (Figure 9.8a), both the total kinetic energy of
a degenerate boson system and the pressure it exerts are very small. (Not zero,
because the uncertainty principle demands that there must be some motion even
at absolute zero.)

For identical fermions, however, only one particle may occupy the quan-
tum state of lowest energy, only one the state of next lowest energy, and so on
(Figure 9.8b). Successive fermions must occupy higher states even at absolute
zero. As a result, both the kinetic energy and the pressure of a “degenerate”
fermion system can be substantial.

Degenerate fermions are like a glass of water. They fill the lowest energy
states up to a certain energy, called the “Fermi level” or “Fermi surface” (i.e.,
the surface of the “Fermi sea”), and the states above that are empty. If the



Natural constraints 177

all bosons in the
one lowest state

bosons
(a)

fermions
(b)

fermions (smaller volume)
(c)

Figure 9.8 At low
temperatures, systems
become ‘‘degenerate,”
with all particles
occupying the states of
lowest energy. (a) All
bosons fall into the one
state of lowest energy. (b)
Unlike the bosons, no two
identical fermions may
occupy the same state, so
they fill the lowest N
states, forming a ‘‘Fermi
sea.”(c) If identical
fermions must fill a
smaller spatial volume,
the Fermi level is
correspondingly higher.

fermions are compressed, the Fermi surface must rise (Figure 9.8c), just as
squeezing an elastic water container makes the water level rise: the number of
quantum states is fixed at Vr Vp/h3, so a smaller volume in coordinate space
means that a larger volume in momentum space is required to accommodate the
fermions.

The conduction electrons in metals are sufficiently close together that the
Fermi level is typically several electron volts -- more than 100 times greater
than thermal energy of an isolated electron at room temperature. So thermal
energies are almost negligible by comparison, and the conduction electrons are
nearly degenerate. The electrons in a white dwarf star are nearly degenerate
even at millions of degrees. Therefore, when we discuss degenerate systems near
absolute zero, the word “near” is relative.

To see how the third law bears on this subject, consider a particle entering a
degenerate system of fixed volume. The first law gives the increase in energy of
the system:

�E = T�S − p�V + µ�N .

Because the volume of the system is fixed, �V = 0, and because the system still
remains in that one configuration or state of lowest possible energy, the entropy
remains unchanged at zero (�S = 0). Therefore, the change in internal energy
due to a single incoming particle is

εadded particle = 0 + 0 + µ (degenerate system). (9.21)

Because all the lower-lying states are full, the particle must enter at the Fermi sur-
face. Therefore, the Fermi energy equals the chemical potential for a degenerate
fermion system:

µ = Fermi energy (degenerate fermion system). (9.22)
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Summary of Section H

At absolute zero, the entropy of any system is zero, irrespective of other factors.

This implies that volume, pressure, and chemical potential do not change with small

changes in temperature. As we also saw in an earlier chapter, all heat capacities

vanish as well.

Systems in which virtually all particles are occupying the lowest energy states

possible are called degenerate. No two identical fermions may occupy the same

quantum state, but any number of bosons may. Therefore, as temperatures approach

zero, all bosons fall into the one lowest quantum state, but this cannot happen for

fermions. All fermion states are occupied, one fermion apiece, up to the Fermi level,

and all are empty above that. At absolute zero, the Fermi level is equal to the

chemical potential.

Problems

Sections A and B
1. How many independent variables are there if a process is:

(a) nondiffusive and carried out at atmospheric pressure?
(b) carried out at atmospheric pressure and held at constant temperature?

2. Consider the function f (w, x, y, z) = xw + yz + xyz, with the constraint
x = w + y.
(a) How many independent variables are there?
(b) If in addition y = 10, how many independent variables are there?
(c) Express f as a function of w, z, using the above two constraints.
(d) Express f as a function of x, z, using the above two constraints.
(e) Express z as a function of f, w , using the above two constraints.

3. Give two imaginary processes that would violate the second law (entropy
increase) without violating the first (energy conservation).

4. Consider the function f (x) = −x2 + 4x + 7.
(a) For what value of x is this a maximum?
(b) What is the value of f ′ at this point?
(c) Is f ′′ positive or negative at this point?

5. Consider the function e−α(x2+y2), where α is a positive constant. Like entropy,
this function is positive everywhere but has a maximum for some value of
the two variables.
(a) For what value of (x, y) is there a maximum?
(b) What is the value of ∂f /∂x at this point?
(c) What is the value of ∂f /∂y at this point?
(d) Is ∂2f /∂x2 at this point positive or negative?
(e) Is ∂2f /∂y2 at this point positive or negative?
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6. For two systems interacting thermally, mechanically, and diffusively with
each other, show that

dQ2 = −dQ1 + (p1 − p2)dV1 − (µ1 − µ2)dN1.

Then use this to prove equation 9.7.

7. Consider two systems, held at the same temperature and pressure, that are
interacting diffusively with each other. Show that if they are not yet in equilib-
rium then particles flow from the system of higher chemical potential toward
the one of lower chemical potential. (That is, derive the result 9.1c.)

8. Can you think of any process (involving two or more systems) in which the
entropy increases without the addition of any heat? (It would have to be a
nonequilibrium process.)

9. In Chapter 14 there are some examples of systems for which the entropy
increases (hence �Q > 0) while the temperature drops (�T < 0) as ener-
gyless particles are added. Explain why this doesn’t violate condition 9.3a.

10. Give an example in which one of the conditions 9.3a, b, c is violated if a
system is engaging in more than one type of interaction at a time.

11. Glass crystallizes as it ages. What does that say about the change in chemical
potential between the amorphous and crystalline phases?

12. A salt (sodium chloride) crystal dissolves in fresh water but not in air. What
does that say about the relative value of the chemical potential of a sodium
or chloride ion in air, in a salt crystal, and in water?

13. A certain sugar has a chemical potential of −1.1 eV in water and −0.8 eV
in oil. Suppose that some of this sugar is dissolved in oil and you wish to
remove it. Can you suggest a way to do it, taking advantage of the difference
in the two chemical potentials?

14. Consider two systems, 1 and 2, interacting thermally but not mechanically or
diffusively. Their initial temperatures are 0 ◦C and 50 ◦C, respectively. The
heat capacities of system 1 are CV 1 = 2R, Cp1 = 2.8R, and those of system 2
are CV 2 = 3R, Cp2 = 4R; R, the gas constant = 8.31 J/(K mole). Find
(a) their temperature after reaching equilibrium,
(b) the change in entropy of system 1,
(c) The change in entropy of the total combined system.
(d) Why is one of the heat capacities (CV or Cp) irrelevant here?

15. Show that equation 9.9 follows from equations 9.7 and 9.8 and from the
condition that �S0 < 0 for displacements away from equilibrium.

16. When water freezes in a closed jar both its volume and its pressure increase,
eventually bursting the jar. Does this violate the second-order condition
�p�V < 0? Explain.
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17. When ice melts, temperature remains constant as heat is added. Does this
violate the second-order condition �Q�T > 0? Explain.

18. Consider particles moving from system A1 to system A2, with µ1 > µ2.
According to the second-order constraints, will the two chemical potentials
both increase, both decrease, move closer together, or move further apart, as
a result of this transfer?

19. Briefly explain how you could verify experimentally any two of the three
second-order constraints for any system you wish.

20. Consider the burning of hydrogen to make water, 2H2 + O2 → 2H2O, the
ratios of the changes in the number of the three types of molecules being
given by �N(H2) : �N(O2) : �N(H2O) = −2 : −1 : 2.
(a) What does the fact that this reaction occurs tell us about the relative

sizes of the following combinations of the chemical potentials indicated,
2µ(H2) + µ(O2) and 2µ(H2O)?

(b) Physically, what causes this difference in chemical potential? Why is one
combination lower than the other?

21. Consider a small system having 100 degrees of freedom in thermal equi-
librium with a large reservoir at room temperature (295 K). Consider the
probability distribution P(E) for the small system as a function of its thermal
energy. (Use E = Etherm = (Nν/2)kT = CV T to transform temperatures into
energies.)
(a) At what value of E does the distribution peak?
(b) What are the standard deviations for fluctuations σE in the energy and

σT in the temperature?
(c) What are the relative widths of the peaks, σE/E and σT /T ?

22. Repeat the preceding problem for a rather small macroscopic system,
having 1020 degrees of freedom, that is in thermal equilibrium with a large
reservoir at 20 ◦C.

23. Consider a 10 gram ice cube in equilibrium with some ice water in a glass.
Each water molecule in ice has six degrees of freedom. For this ice cube,
using E = Etherm = (Nν/2)kT = nCV T , find
(a) the mean thermal energy,
(b) the standard deviation,
(c) the relative width of the peak, σ/E.

24. Consider a mole of helium atoms (helium is an ideal monatomic gas) in
thermal equilibrium with a very large reservoir at 300 K. For this helium
system, using E = Etherm = (Nν/2)kT = nCV T , find
(a) the average internal energy,
(b) the standard deviation.
(c) What fraction of the total energy is the standard deviation?
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25. A thin film of some solid material (with six degrees of freedom per atom) is
deposited on a substrate of area 0.5 cm2. The atomic spacing in the deposited
material is 0.15 nm. Roughly what is the minimum thickness for this film if
we want the relative fluctuations in its internal energy (σE/E) to be less than
a tenth of a part per billion?

26. A canister containing NA nitrogen (N2) molecules (where NA is Avogadro’s
number) is in thermal equilibrium with a large heat reservoir. Each molecule
has three translational and two rotational degrees of freedom. Using nCV =
(Nν/2)k, find
(a) the number of degrees of freedom of the whole gas,

(b) the temperature of the reservoir, given that the mean energy of the gas is
3200 J.

(c) You want to bet that at any instant the internal energy of the gas is within
x% of its mean value. What is the smallest percentage x that you could
use here and still have at least a 68% chance of winning?

27. A tiny bacterium has dimensions of about 10−6 m in each direction. Assume
that it is mostly water.
(a) How many molecules are in it?
(b) If each molecule has six degrees of freedom, what are the relative fluc-

tuations in its temperature, σT /T , given that nCV = (Nν/2)k?

28. Later we will show that, for the adiabatic expansion (�Q = �N = 0) of an
ideal gas, pV γ = constant, where γ = (ν + 2)/ν. Using this result, show that
−V (∂p/∂V )Q,N is equal to γ p. Show that for the isothermal expansion of an
ideal gas (for which pV = NkT), −V (∂p/∂V )T,N is equal to p. Use these two
results to make a rough estimate of the ratio σV (adiabatic)/σV (isothermal)
for the fluctuation in volume of a gas bubble.

29. Using the result 9.11c, calculate the relative fluctuation σV /V in the volume
of a bubble of an ideal diatomic gas in the ocean at 0 ◦C and atmospheric
pressure if the bubble’s volume is (a) 10−3 µm3, (b) 1 liter.

30. A typical value of
(

∂
∂N

(
µ

T

))
E,V

is Nk. The ocean’s salinity is 3.5% by weight or
about 2.0% by number of particles. About 45% of these particles are sodium
ions. A tiny planktonic organism has a volume of 40 µm3 and the same
salinity as its oceanic environment and lives where the water’s temperature
is 6 ◦C.
(a) Make a rough estimate of how many sodium ions are in its body at any

one time, on average.
(b) What is the standard deviation about this value?
(c) What is the relative fluctuation?
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31. For an ideal gas, pV = NkT and µ = kT
(

ν+2
2 + ln ωc

)
, where ωc is given

in equation 6.10. Use these to derive the results 9.11c for σV and σN .

32. Show that for an ideal gas, σE

E
=

√
2

Nν
. Use E = (Nν/2)kT .

Sections C and D
33. You want to determine the temperature of the air in an oven without using a

thermometer.
(a) How will you do it? What would be the thermometric (measured) param-

eter that you would use?
(b) Would this prevent you from using the oven to cook food?

34. When a gas is at constant pressure, the volume varies with temperature. When
a gas is at constant volume, the pressure varies with temperature. A ther-
mometer with which of these features would be useful over a wider range
of temperatures? Why? (Hint: Think about intermolecular forces at low
temperatures.)

35. Suppose you have a constant volume gas thermometer containing an ideal
gas, for which pV = NkT . When the gas bulb is placed in ice water at 0 ◦C
the pressure gauge reads 730 mm of mercury, and when it is placed in boiling
water at 100 ◦C it reads 990 mm of mercury.
(a) If it reads 850 mm of mercury when placed in your bath water, what is

the temperature of the water?
(b) According to this thermometer, what is the temperature of absolute zero?

36. Think about the densities of liquid water and of ice.
(a) Which is denser?
(b) Which is favored by higher pressures?
(c) Considering the answer to part (b), why do you suppose ice is slippery

when you step on it but a sheet of glass is not?
(d) Why does the freezing point rise as pressure is reduced?
(e) Why does the boiling point fall as pressure is reduced?

37. Write down the zeroth, first, second, and third laws of thermodynamics,
putting each in any form you wish as long as it is correct.

Section E
38. Consider a system A1 having N1 particles at chemical potential µ1, and a

system A2 having N2 particles at chemical potential µ2, with µ1 > µ2. If
these two systems are briefly brought into diffusive contact, a small number
of particles, �N , goes from one to the other.
(a) Which system acquires these particles and why?
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(b) In terms of N1, N2, µ1, and µ2, what is the Gibbs free energy of the two
systems before the interaction?

(c) For small �N the change in Gibbs free energy is roughly (µ2 − µ1)�N .
But for larger �N , some second-order terms might become important.
What are these second-order terms?

39. Heat transfer is given by T dS. Work done is given by pdV . We integrated
these over an entire system, getting T S and pV , respectively. Why, then,
would it not be meaningful to call TS the “heat content” and pV the “work
content” of the system? (Hint: Starting near absolute zero, can you think of a
way for the system to end up with TS without adding any heat, or pV without
doing any work?)

40. The entropy of water at 25 ◦C and 1 atm is 188.8 joules/(mole K). The
molecular weight of water is 18 and the specific heat is 4.186 J/(g K). Suppose
that you raise the temperature of this water to 27 ◦C.
(a) What is the new molar entropy of the water?
(b) By how much would you have to change the pressure in order to keep

the chemical potential unchanged?

41. Starting with the integrated form of the first law (9.12), prove that Ndµ =
−SdT + V dp.

Section F
42. Show that the differential expressions for the Helmholtz free energy, enthalpy,

and Gibbs free energy all follow from the definitions of these functions. Use
the differential of their definitions, and the first law for dE.

43. Although the differential forms 9.15 of the special energy functions follow
from the definitions 9.14 and the first law, show that they can be derived also
from equations 9.14′ and the condition 9.13.

44. Prove that Equations 9.14′ follow from the definitions 9.14.

45. Using the differential forms of the thermodynamic potentials 9.15, and
the second law constraints 9.1, prove that for two interacting systems in
equilibrium:
(a) the Helmholtz free energy is a minimum if the interaction is isothermal;
(b) the enthalpy is a maximum if the interaction is isobaric.
(c) The Gibbs free energy is a minimum if the interaction is both isothermal

and isobaric.

46. Explain why Helmholtz free energy is really only the “work function” for
certain types of processes.

47. Explain why the enthalpy is really only the “heat function” for certain types
of processes.
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48. Consider the Helmholtz free energy of two systems interacting mechanically
and diffusively but held at constant temperature. Suppose that the two systems
are displaced slightly away from equilibrium by the transfer of a small amount
of volume or small number of particles from one to the other. By examining
both the first-order and second-order terms in this small displacement, show
that the Helmholtz free energy is a minimum when the two are in equilibrium.
(For simplicity, you might consider one of them to be a reservoir for which
�p = �µ = 0.)

49. Consider the Gibbs free energy of two systems interacting diffusively, but held
at constant temperature and pressure. Suppose the two systems are displaced
slightly away from equilibrium by the transfer of a small number of particles
from one to the other. By examining both the first- and second-order terms
in this small displacement, show that the Gibbs free energy is a minimum
when the two are in equilibrium.

Section G
50. Derive a Maxwell relation from the exact differential dx = f dy + gdz.

51. Derive the three Maxwell relations that are obtained from (a) dE, (b) dF,
(c) dH, (d) dG.

52. You wish to confirm Maxwell’s relations experimentally for a system of fixed
number of particles (dN = 0), using an apparatus like that of Figure 9.7. How
would you measure the following: (a)

(
∂T
∂V

)
S

≈ (
�T
�V

)
S
, (b)

(
∂p
∂S

)
V

, (c)
(

∂S
∂V

)
T

,

(d)
(

∂p
∂T

)
V

?

53. You wish to confirm Maxwell’s relations experimentally for a system that
can receive heat, work, or particles from its environment, using an appa-
ratus similar to that of Figure 9.7. How would you measure the following:
(a)

(
∂V
∂ N

)
T,p

, (b)
(

∂V
∂S

)
p,N

, (c)
(

∂p
∂T

)
V,N

?

Section H
54. From the third law, we have (∂S/∂N)T,p = 0 at absolute zero. We were able

to turn this into (∂µ/∂T)p,N = 0, using one of Maxwell’s relations.
(a) Which one?
(b) We could have obtained this same result another way, simply by looking at

another relationship we have that involves variations in µ, T, p. Explain.

55. For a single particle free to move about in a volume Vr , the number of
accessible quantum states is given by (equation 1.4) ω = Vr Vp/h3. For a
system of N identical particles, the corrected number of accessible states
per particle is ωc = eω/N = e(Vr/N )Vp/h3. Use this information to find
the typical kinetic energy of electrons for the following degenerate systems
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(spin-up and spin-down electrons are not identical, so work this problem for
one spin orientation only. me = 9.1 × 10−31 kg):
(a) a typical metal, in which there are 1029 conduction electrons per cubic

meter;
(b) a white dwarf, in which there are about 1036 free electrons per cubic

meter.
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A Equations of state

Any thermodynamic property of a system depends on as many parameters as
there are kinds of interaction (Figure 10.1). If a system interacts in three ways --
thermally, mechanically, and diffusively -- then each property depends on three
variables. For example, of the seven variables (E, T, S, p, V , µ, N) appearing in
the first law (equation 8.4),

dE = T dS − pdV + µdN ,

only three are independent. If we choose S, V, N as our independent variables,
then we should be able to express all properties of the system in terms of these
three:

T = T (S, V, N ), p = p(S, V, N ), G = G(S, V, N ),

µ = µ(S, V, N ), E = E(S, V, N ), etc.

The independent variables need not be S, V, N . We could choose nearly any
three that we wish. But whichever set we choose, all other parameters are func-
tions of them. If we are clever, we can figure out these functional relationships.
We employ a variety of techniques to help us discover them. The “universal
constraints” of the previous chapter give interrelationships for all systems. In

186
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succeeding chapters, we study how to use “imposed constraints” to simplify the
analysis further by reducing the number of independent variables.

But in this chapter, we introduce simplified conceptual pictures, called “mod-
els,” to help us visualize the interrelationships between parameters for specific
types of system. When expressed as equations, these interrelationships are called
“equations of state.” Equations of state can relate any set of variables, but often
they involve easily measured quantities such as temperature, pressure, and vol-
ume. Owing to the excessive number of variables, many such interrelationships
must exist, whether or not we are clever enough to discover them. We now examine
various types of systems, using material that is already familiar to us.

Figure 10.1 There is one
independent variable for
each type of interaction. In
this illustration, the
system is engaging in
three types of interaction
(thermal, mechanical, and
diffusive), so every
property of the system
depends on three
variables. What happens if
it exchanges more than
one kind of particle or
does more than one kind
of work?

B Ideal gases and solids

In Chapter 6 we found that we could write the number of states accessible to a
system as (equation 6.7)

� = ωN
c ,

where ωc is the number of states per particle corrected for identical particles. We
used rather general considerations to find that (equation 6.10)

ωc, solid ≈ C

(
Etherm

Nν

)ν/2

, ωc, gas ≈
(

C
V

N

)(
Etherm

Nν

)ν/2

,

where each factor C is some constant, and where Etherm is related to the internal
energy E through (equation 4.13)

Etherm = Nν

2
kT = E − Nu0.

In the ideal gas model, the particles are tiny and perfectly elastic billiard balls,
whose average spacing is large compared with their size. They have no long-
range interactions and so no potential energy. In solids, however, interparticle
interactions are strong, and the potential wells are deep and sensitive to the
particles’ spacing. So we have

u0, ideal gas = 0, u0, solid = u0(V ). (10.1)

We now insert these expressions into the definition of entropy (equation 7.10),

S = k ln � = k ln
(
ωN

c

) = Nk ln ωc,

to find that the respective entropies are the following functions of E, V, N :

S = Nk ln C

(
V

N

)(
E

N

)ν/2

for ideal gases, (10.2a)

S = Nk ln C

(
E − Nu0

N

)ν/2

for solids (10.2b)
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Figure 10.2 The change in momentum when a molecule collides elastically with a
wall in the yz-plane is �p = 2mvx. The time it takes to go back and forth across the
container is �t = 2X/vx. Therefore, the rate of change in momentum per molecule
rebounding off this wall is �p/�t = mvx

2/X. If we sum over all N particles for the
total force and then divide this total force by the wall’s area to get the pressure, we
end up with the ideal gas law.

These equations of state relate the extrinsic variables S, E, V, N . We can now
use equations 8.7 (from the first law),

1

T
=

(
∂S

∂ E

)
V,N

,
p

T
=

(
∂S

∂V

)
E,N

,
µ

T
= −

(
∂S

∂ N

)
E,V

,

to expose further interrelationships. When applied to the entropy of an ideal gas
(10.2a), these three equations give us for an ideal gas

E = Nν

2
kT, (10.3a)

pV = NkT, (10.3b)

Nµ = NkT

(
ν + 2

2
− ln ωc

)
= E + pV − NkT ln ωc, (10.3c)

where the last expression uses the first two to express E and pV in terms of kT .
We have encountered all three results (10.3a, b, c) before. The first is

equipartition; with each of the Nν degrees of freedom is associated an aver-
age energy (1/2)kT .1 The second (10.3b) is the ideal gas law, which relates the
four parameters p, V, N , T . (An alternate derivation is found in the problems
and is outlined in Figure 10.2.) The third result (10.3c) uses equation 7.10 for
(S = k ln � = Nk ln ωc) in the integrated form of the first law (9.12):

E = T S − pV + µN ⇒ Nµ = E + pV − T S.

1 Notice that the internal energy depends on only two parameters N , T , and not three. The particles

of an ideal gas do not interact at a distance, so their spacing (i.e., the volume) does not matter.
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We now do the same for solids. When applied to the entropy of an ideal
solid 10.2b, the three equations 8.7 on the preceding page give the following
(homework):

E = Nu0 + Nν

2
kT, (10.4a)

p = −N

(
∂u0

∂V

)
E,N

, (10.4b)

Nµ = Nu0 + NkT

(
ν

2
− ln ωc

)

= E − NkT ln ωc (solids) (10.4c)

Again, in the last equation we have used the first to express the internal energy
in terms of kT .

As before, the first of the above equations displays equipartition for the thermal
energy. And the last equation, for chemical potential, is the same as that for a gas
(10.3c) except that the volume per particle is negligible for solids. The second
equation is new, however. It tells us that in order to obtain for solids the counterpart
of the ideal gas law (how pressure changes with volume), we would need to know
how the depth of the potential wells depends on the interparticle spacing.

C Real gases

The ideal gas model works well for rarefied gases. But it must be modified to
describe gases at higher densities where molecular sizes are not small compared
with their spacing, and mutual interactions cannot be ignored. We begin this
modification by rewriting the ideal gas law 10.3b in terms of the molar volume v

and the gas constant R:

pv = RT, (10.5)

where R = NAk = 8.31 J/(K mole) = 0.0821 atm liter/(K mole). (10.6)

This relation wrongly implies that we can make the volume arbitrarily small by
applying a sufficiently large pressure. In fact, however, once the electron clouds
of neighboring molecules begin to overlap it is almost impossible to compress
the gas further. We can incorporate this limit through the replacement of v by
v − b, where b is the minimum molar volume:

v → v − b.

Alternatively, you can think of the volume available to any molecule as the entire
volume, v, less that occupied by all the other molecules, b. This approach is used
in the homework problems, where you examine the entropy of a real gas.

Another deviation from the ideal gas model is the weak long-range forces
among molecules, which cause them to condense to liquids at sufficiently low
temperatures. This attraction helps hold the molecules of the gas together, as does
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Table 10.1. Van der Waals constants for common gases

Gas a
(

liter2 atm
mole2

)
b
(

liter
mole

)
Gas a

(
liter2 atm

mole2

)
b

(
liter
mole

)
acetone 13.91 0.0994 methane 2.253 0.04278
ammonia 4.170 0.03707 nitrogen 1.390 0.03913
carbon dioxide 3.592 0.04267 oxygen 1.360 0.03183
carbon monoxide 1.485 0.03985 propane 8.664 0.08445
chlorine 6.493 0.05622 sulfur dioxide 6.714 0.05636
ethyl alcohol 12.02 0.08407 water 5.464 0.03049
hydrogen 0.2444 0.02611

Figure 10.3 There is
long-range attraction
between gas molecules.
Electrostatic forces
enhance the attraction
between unlike charges
by: (a) causing small
distortions of their
electron clouds, or (b)
changing the orientations
of polarized molecules.

the external pressure exerted by the walls of the container. So the factor of p in
equation 10.5 must be modified:

p → p + mutual attraction

This mutual “van der Waals” attraction is caused by charge polarizations
(Figure 10.3). It is inversely proportional to the sixth power of the average molec-
ular separation2 or, equivalently, to the square of the molar volume (1/r6 ≈ 1/v2).
Hence

p → p + a

v2

These two effects are incorporated into a modification of the ideal gas law
pv = RT called the “van der Waals equation of state” for a real gas:(

p + a

v2

)
(v − b) = RT, (10.7)

where the parameters a and b depend on the gas (Table 10.1). We see that the
two modifications are most significant when the molar volume is small. For more

2 Dipole--dipole interaction energy goes as −1/r3 ≈−1/υ. Since change in potential energy is given

by work = ∫
pdυ ≈ −1/υ, we expect that the appropriate pressure term would be p ≈ 1/υ2.



Models 191

rarefied real gases, we have v � b and p � a/v2, so the modifications can be
ignored and the ideal gas law is good enough.

Because of their mutual attraction, the molecules are in a very shallow potential
well. We can calculate the depth of this potential well per mole, U0, by integrating
dU0 = −F · dx = −pvdwdv, where this “pressure” is due to the van der Waals
attraction:

U0 = NAu0 = −
v∫

∞

(
− a

v′2
)

dv′ = −a

v
. (10.8)

D Liquids

We do not yet have a good model for liquids. Their molecules are mobile, like
those of a gas, but their compressibilities are many orders of magnitude smaller.
For these reasons, it is sometimes convenient to use a van der Waals model with
molar volumes very near b, so that very large increases in the pressure p are
required for very small changes in v. Molar volumes for liquids are typically
three orders of magnitude smaller than for gases, and such large extrapolation
requires modification of the parameters a, b.

Furthermore, the form of the pressure modification a/v2 cannot be correct
for the liquid phase, because other types of interaction dominate the van der
Waals forces at small intermolecular distances (homework). But, because of the
v − b term, the overall feature that large changes in the applied pressure p cause
only very small changes in the molar volume v is still correctly represented.
Consequently, the van der Waals equation can be useful in acquiring qualitative
insight into the behavior of liquids, particularly in studying gas--liquid phase
transitions since it can be applied to both phases. However, it is not adequate for
detailed or quantitative investigations of liquids.

E Further modeling of solids

One distinguishing feature of solids is that each individual atom is confined to a
very small region of space, being stuck in a potential well that is caused by its
electromagnetic interactions with neighbors. Each atom is located near the bottom
of its potential well, and thermal agitation causes it to oscillate. Thus, each atom
is a three-dimensional harmonic oscillator and has six degrees of freedom -- three
kinetic and three potential (see equation 4.3).

E.1 Phonons

It is sometimes convenient to think of a solid as being a lattice of atomic masses
coupled by springs (Figure 4.5). These are not like ordinary springs, however,
because an active atom can’t simply send vibrations in all directions through-
out the solid. Atoms confined in potential wells can have only certain energies
(subsection 1B.8). Because the excitations come in only certain discrete amounts,
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Figure 10.4 The atoms in
solids can vibrate only
with certain discrete
energies. Vibrational
excitations are either on
or off, and cannot be
shared among
neighboring atoms.
Whenever one atom
starts shaking, another
must stop. In this way,
these vibrational
excitations (‘‘phonons”)
travel from one atom to
the next. They act like
little energy-carrying
particles that wander
throughout the lattice.

one atom must stop vibrating when its neighbor starts. The vibrations are either
on or off. This means that vibrational excitations are passed from atom to atom
throughout the solid, one at a time (Figure 10.4). Higher temperatures produce
more excitations. If two happen to pass through the same place at the same time,
then the atom at that spot occupies its second excited level for that moment.
Like the particles of a gas, these vibrational excitations travel freely throughout
the solid, passing from atom to atom and being constrained only by the solid’s
boundaries. Each traveling quantum of energy is called a “phonon,” and together
they can be treated as a gas -- a “phonon gas.”

E.2 Conduction electrons and holes

In addition to the lattice of harmonic oscillators, or phonon gas, conductors
and semiconductors also have conduction electrons. The electrons of isolated
atoms are in discrete energy levels. But when atoms are close together, perturba-
tions from the neighbors cause these discrete levels to spread out into “bands”
(Figure 10.5).

In conducting metals, the outermost electrons are mobile. They are either in
a band of states that is only partially filled or in a filled band that overlaps with
the next higher empty band. Either of these mechanisms gives these electrons
freedom to move into empty neighboring states. Consequently, they are not tied
to individual atoms but can gain energy and move from one atom to another.
Because of their mobility, they are responsible for the high electrical and thermal
conductivities of metals. In a typical metal, each atom contributes one or two
electrons to this “conduction band,” so the number of conduction electrons is
typically one or two times the number of atoms. In the lower “valence bands,”
all states are filled, and so electrons have no neighboring states into which they
can move. These valence electrons can be thought of as remaining bound to their
parent atoms.

Conduction electrons, however, can be thought of as an “electron gas,” con-
fined only by the boundaries of the metal. In a later chapter, we will see that this
is a very peculiar kind of gas. Not only is it nearly incompressible, but also, each
electron’s freedom of movement is heavily constrained by the other conduction
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Figure 10.5 Illustration of the energies allowed the electrons in an atom. When
isolated, the atom’s electron energy levels are discrete. However, when atoms are
closely packed, each atom’s outer electrons are perturbed by its neighbors, causing
these perturbed states to spread out into bands. (Left) In conductors, the outermost
band that contains electrons is either partially empty or overlaps with the next
higher band of empty states, giving the electrons in this ‘‘conduction band”
considerable freedom to move into neighboring unfilled states. The mobility of
these electrons is what gives these materials their high thermal and electrical
conductivities. (Right) In other solids, the outermost band of completely filled
electron states does not overlap with the next higher band of empty states. Either
few (semiconductors) or no (insulators) electrons can jump the gap between these
two bands. Any that do make it to the higher ‘‘conduction band”are surrounded by
vacant states into which they can move, and so they have high mobilities.

electrons around it. Such an electron gas, therefore, is substantially different from
the ideal gases we studied earlier.

In semiconductors the density of conduction electrons is much smaller than in
metals. The reason is that the outermost filled band (the valence band) does not
quite overlap with the next higher band (the conduction band) of empty electron
states (Figure 10.5). To reach the empty states, electrons must jump this gap
between bands. Relatively few electrons can do it, but those that do are then
surrounded by empty states that give them considerable mobility.

Conduction in semiconductors may also be accomplished by vacancies or
“holes” in the valence band (Figure 10.6). A hole is created when a valence
electron jumps into the conduction band or onto an impurity atom, leaving its
former state empty. The atom that lost the electron then carries a net positive
charge. If another electron moves over to fill this hole, it creates another hole in
the atom that it left. So the positive charge shifts from atom to atom in a direction
backwards to the direction in which the electrons move. That is, the sequential
migration of valence electrons in one direction causes the backwards migration
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Figure 10.6 Illustration of conduction by holes in the valence band, with the three
sequences progressing from top to bottom. The encircled plus signs represent the
fixed positive ions. When an electron moves in one direction to fill up a vacancy, it
leaves another vacancy behind. Each vacancy is called a ‘‘hole”and carries a net
positive charge, because it is an atom that is missing an electron. In the figure the
electrons are moving to the left and the hole is moving to the right, this being the
conventional direction of the electric current.

of these positively charged holes. But opposite charge moving in the opposite
direction means that the direction of the electrical current is the same.

Since models for solids frequently involve more than one component, it is
often helpful to simplify our studies by concentrating on one property of one
component at a time. For example, we may wish to study the heat capacity of the
lattice alone, or the magnetic properties of the electron gas alone, etc.

Summary of Sections A--E

Of all the parameters we use to describe a system, only a few are independent.

Interdependencies can be revealed through universal constraints applying to all

systems and by imposed constraints that further restrict the number of independent

variables. In addition, there are interrelationships that depend on the particular

nature of the system and vary from one system to the next. These system-dependent

interrelationships are called “equations of state,” and we use conceptual models to

help us identify some of them.

In our model for ideal gases, each molecule is very tiny, noninteracting, and can

access the entire volume of the gas. In our model for solids, each atom is a harmonic

oscillator. We used these models in Chapter 6 to calculate the respective entropies

(equations 10.2):

S = Nk ln C

(
V

N

)(
E

N

)ν/2

(ideal gases),

S = Nk ln C

(
E − Nu0

Nν

)ν/2

(solids).
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To these we apply equations 8.7 from the first law

1

T
=

(
∂S

∂ E

)
V,N

,
p

T
=

(
∂S

∂V

)
E,N

,
µ

T
= −

(
∂S

∂ N

)
E,V

,

to find the following equations of state for ideal gases (equations 10.3):

E = Nν

2
kT,

pV = NkT ,

Nµ = NkT

(
ν + 2

2
− ln ωc

)
= E + pV − NkT ln ωc,

and the following equations of state for solids (equations 10.4),

E = Nu0 + Nν

2
kT,

p = −N

(
∂u0

∂V

)
E,N

Nµ = Nu0 + NkT
(ν

2
− ln ωc

)
= E − NkT ln ωc.

For real (as opposed to ideal) gases, intermolecular interactions cannot be

neglected. If v represents the molar volume, b being its minimum value, and a/v2

represents the van der Waals attraction among molecules, then we get the following

modification (equation 10.7) of the ideal gas law:(
p + a

v2

)
(v − b) = RT (van der Waals equation).

Good models for liquids do not exist, although the van der Waals equation has

some appropriate qualitative features and can give us insight into gas--liquid phase

transitions.

In solids the atoms are anchored in place, each oscillating around some specific

equilibrium position. Quantized vibrations called phonons travel throughout the

solid.

Free-moving conduction electrons are an important constituent of metals and

semiconductors. Perturbations from neighboring atoms cause outer electron

states to spread out into bands. In metals, the outer electrons do not completely fill

all the states in the band available to them, so some can easily move into

neighboring empty states. This gives them a great deal of mobility and makes

metals good thermal and electrical conductors. In semiconductors, the outer band

of filled electron states is separated from the next higher band of vacant states by a

small band gap. Relatively few electrons can jump this gap into the conduction band,

where the vacant states allow them great mobility. Conduction in semiconductors is

also achieved by positively charged holes in the valence

band.
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F Tests and applications

F.1 Easily measured properties

Many easily measured properties of systems provide insight for improving our
models. Important examples include the molar heat capacities;

Cp = 1

n

(
∂ Q

∂T

)
p

, CV = 1

n

(
∂ Q

∂T

)
V

, (10.9, 10.10)

where n is the number of moles, the isothermal compressibility,3

κ = − 1

V

(
∂V

∂p

)
T

, (10.11)

and the coefficient of volume expansion,

β = 1

V

(
∂V

∂T

)
p

. (10.12)

In these measures we use molar heat capacities and fractional changes in volume,
�V/V , because we want our tests to depend only on the nature of the material
and not on its size.

We now examine molar heat capacities more closely. The internal energy of
one mole (n = 1) of a substance is equal to Avogadro’s number times the average
energy per particle:

Emolar = NA

(
u0 + ν

2
kT

)
= NAu0 + ν

2
RT .

With this expression and the first law (dE = dQ − pdV , with N = NA), we get
for one mole

dQ = dE + pdv = NAdu0 + ν

2
RdT + pdv,

so that the molar heat capacities at constant y become

Cy = 1

n

(
∂ Q

∂T

)
y

= NA

(
∂u0

∂T

)
y

+ ν

2
R + p

(
∂v

∂T

)
y

. (10.13)

In solids and gases, the potential energy reference level is nearly constant
(∂u0/∂T ≈ 0), so the molar heat capacities at constant volume and constant
pressure are

CV ≈ ν

2
R, (10.14)

Cp ≈ ν

2
R + p

(
∂v

∂T

)
p

= ν

2
R + pvβ (solids and gases). (10.15)

3 We use standard symbols in this text, which sometimes leads to overlap. So you will have to

distinguish them by context. For example, the symbol “κ” for isothermal compressibility is also

the elastic constant in harmonic oscillators. Other examples include the µ used for both chemical

potential and magnetic moments of particles, M used both for mass and molar magnetic moment,

p used for pressure, momentum and probability, etc.
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Table 10.2. The ratio (C p − Cv)/R for various materials at 0 ◦C and for
water at 20 ◦C

Material (Cp − CV )/R Material (Cp − CV )/R

gases solids
air 1.00 aluminum 0.0068
ammonia 1.05 brass 0.0050
carbon dioxide 1.02 diamond 0.00015
water vapor 1.14 ice 0.027

liquids gold 0.0052
ethyl alcohol 0.70
water (at 20 ◦C) 0.045
water (at 0 ◦C) −0.014

Therefore, the difference in the two measures of molar heat capacity CV and C p

is
Cp − CV ≈ pvβ (solids and gases). (10.16)

As illustrated in Table 10.2, the difference C p − CV is large for gases. But it is
so small for solids that often we don’t bother to distinguish between the two. It
is also small for liquids, although this is more difficult to demonstrate, as can be
seen in the homework problems.

F.2 Heat capacities and equipartition

Because a molar heat capacity depends on the number of degrees of freedom
per molecule, ν, the study of this macroscopic property helps reveal microscopic
structure. We find that the result 10.14 is correct for the molar heat capacities of
most solids and gases,4 but not for liquids.

For liquids, u0 varies with temperature. This contributes to the molar heat
capacity, as is seen from the ∂u0/∂T term in equation 10.13:

CV = NA

(
∂u0

∂T

)
v

+ ν

2
R (molar volume v is nearly constant).

The molecules of liquids tend to move and rotate to accommodate favored con-
figurations of lower potential energy (Figure 10.7a). At higher temperatures, their
motions are more violent and less ordered, reducing the time spent in favored ori-
entations. Consequently, the time-averaged depth of the potential well u0 gets
shallower with increasing temperature, thus absorbing energy like additional
degrees of freedom. If we use ν ′ to indicate the effective number of degrees
of freedom, then the molar heat capacity becomes

CV = ν ′

2
R.

4 Provided that we can ignore quantum effects. More about this in later chapters.
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Table 10.3. Coefficients of volume expansion β = (1/V ) (∂V /∂T )p at room
temperature and p = 1 atm

Solids β(1/K) Liquids β(1/K) Gases β(1/K)

aluminum 5.5 × 10−5 alcohol 9.0 × 10−4 air 3.7 × 10−3

brass 5.6 × 10−5 olive oil 6.8 × 10−4 CO2 3.8 × 10−3

marble 3.4 × 10−5 water 2.1× 10−4 N2 3.7 × 10−3

steel 4.0 × 10−5 mercury 1.8 × 10−4 H2 3.7 × 10−3

quartz 3.4 × 10−5 H2O 4.2 × 10−3

wood (oak) 11.2 × 10−5

Figure 10.7 (a) In liquids the depth of the potential well varies with temperature.
When cold, orientations with unlike charges close together are favored, and the
attractive interactions make the average potential well deeper. (b) In water, the low
temperature aggregates are porous, making the water less dense. As is seen on this
plot of volume versus temperature for water, the volume per gram decreases with
increased temperature between 0 and 4 ◦C, where the breakup of the tiny crystalline
aggregates dominates. But above 4 ◦C, expansion due to the molecular thermal
motion dominates.

For liquid water, ν ′ is about 18, for liquid oxygen 12, and for liquid hydrogen 10.
The tendency of molecules in liquids to find favorable orientations at

lower temperatures has an interesting consequence for the density of water
(Figure 10.7b): the highly polarized water molecules tend to form porous hexag-
onal structures (Figure 5.6), which makes the water expand when it freezes.
Fragments of these crystalline structures survive even after the ice melts. In heat-
ing up the ice melt, the continued breakup of these structures makes the water
become denser up to a temperature of about 4 ◦C, after which the normal tendency
to expand with increased thermal motion dominates.

F.3 Gases

We now examine the properties of gases in particular. The molar heat capac-
ity CV of any normal gas is nearly the same as that of an ideal gas, given in
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Figure 10.8 Plots of pκ

and (Cp−CV )/R vs. molar
volume for nitrogen gas
at 293 K (20 ◦C), for the
van der Waals model.
(The arrows indicate the
molar volume at
atmospheric pressure.)
The ideal gas model gives
a value of 1.000 for both.
Notice that the
predictions of the two
models are nearly the
same except at very small
molar volumes.

equation 10.14.5 Other properties depend more on the particular model chosen
for the gas and therefore provide better tests of that model. Particularly interesting
are the isothermal compressibility, the coefficient of volume expansion, and the
difference in molar heat capacities (equations 10.11, 10.12, 10.16).

We have learned that the ideal gas model is appropriate for normal rarefied
gases (v � b), and that when the molecules are closer together and mutual inter-
actions become important the van der Waals model is better. We now list these two
models in their differential forms. We solve each for dv, so that we can easily pick
out its dependence on p and T as is required for obtaining the above properties.
For the ideal gas model,

pv = RT .

The differential form of this is

pdv + vdp = RdT
(10.17)

⇒ dv = − v

p
dp + R

p
dT .

For the van der Waals model,(
p + a

v2

)
(v − b) = RT .

The differential form of this is

Avdp + Bpdv = RdT

⇒ dv = − A

B

v

p
dp + 1

B

R

p
dT (10.18)

with

A =
(

1 − b

v

)
, B =

(
1 − a

pv2
+ 2ab

pv3

)
. (10.19)

The two expressions 10.17 and 10.18 for dv become the same in the limit of
rarefied gases, because the van der Waals factors A and B become

A ≈ 1, B ≈ 1 for v � b and p � a

v2
(rarefied gas). (10.20)

5 Constant volume means that average particle separations (hence interaction strength) are unchanged.

So not only is u0 small for real gases, but it hardly changes with temperature.
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In the above differential forms, the dependence ofvon p and T (dv = (· · ·)dp +
(· · ·)dT ) is explicit.6 The results for the various properties are listed in Table 10.4.
You can see that the predictions of the two models differ only by the factors A and
B. So when the molecules are far apart (v � b), the two models have the same
predictions (Figure 10.8).

Summary of Section F

The relationships between certain parameters are easily measured experimentally

and serve as good tests of our models. These interrelationships include

(equations 10.9--10.12):

molar heat capacities, Cp = 1

n

(
∂ Q

∂T

)
p

, CV = 1

n

(
∂ Q

∂T

)
V

;

isothermal compressibility, κ = − 1

V

(
∂V

∂p

)
T

;

coefficient of volume expansion, β = 1

V

(
∂V

∂T

)
p

.

For solids and gases, we can usually assume that u0 ≈ constant. For these cases, the

molar heat capacity at constant volume is given by (equation 10.14)

CV ≈ ν

2
R,

and the difference between Cp and CV is (equation 10.16)

Cp − CV

(
≈ p

∂v

∂T

)
p

= pvβ.

This difference is large for gases but very small for solids. Because the molar heat

capacity of a system depends on the number of degrees of freedom per molecule, ν,

the study of this macroscopic property 10.16 helps to reveal the microscopic

structure. For liquids, changes in the level of u0 act as additional degrees of freedom

for storing added energy.

The differential forms of the ideal and van der Waals gas models are

(equations 10.17--10.19):

ideal gas, dv = − v

p
dp + R

p
dT ;

van der Waals gas, dv = − A

B

v

p
dp + 1

B

R

p
dT,

with A =
(

1 − b

v

)
, B =

(
1 − a

pv2
+ 2ab

pv3

)
In these formulas the isothermal compressibility, coefficient of volume expansion,

and difference in molar heat capacities are easily identified. They are listed in

Table 10.4. In the limit of rarefied gases A ≈ B ≈ 1 so the two models give the same

predictions in this region.

6 The coefficients (. . .) are (∂υ/∂p)T and ((∂υ/∂T )p . Also note that ∂υ/υ = ∂V/V .
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Table 10.4. Isothermal compressibility, coefficient of volume expansion, and
the difference in molar heat capacities according to ideal gas and van der
Waals models

Gas Definition Ideal gas van der Waals

isothermal compressibility κ = − 1

V

(
∂V

∂p

)
T

1

p

A

B

1

p

coefficient of volume
expansion

β = 1

V

(
∂V

∂T

)
p

R

pv
= 1

T

1

B

R

pv

difference in heat capacities Cp − CV ≈ pvβ R
1

B
R

Problems

Section A
1. Given the system variables E, S, T, p, V , µ, N , if a system is interacting in

three different ways, how many independent equations must exist (whether
we know them or not) to interrelate these variables?

2. The two equations of state E = (3/2)NkT and pV = NkT for an ideal gas
involve five parameters (E, N, T, p, V ), so that three parameters are indepen-
dent. Find
(a) p(T, V, N ) and (∂p/∂V )T,N ,
(b) E(T, p, N ) and (∂E/∂p)T,N .

3. Suppose that there exists between the five parameters E, T, S, p, V the fol-
lowing interrelationship: S = CV 2 ln E, where C is a constant. Evaluate
the following: (a) 1/T = (∂S/∂E)V , (b) p/T = (∂S/∂V )E , (c) (∂E/∂V )T ,
(d) (∂p/∂V )S .

4. Chemical potential is normally negative. According to equations 9.13 and
9.3c, it decreases with increasing temperature, increases with increasing
pressure, and increases with increasing N . Invent any equation of state
relating the parameters µ, T, p, N for which these requirements would be
satisfied.

Section B
5. What is (∂ E/∂p)V,N for an ideal gas? (Hint: Express E as a function of p

and V .)

6. Show that equations 10.2a, b for the entropies of an ideal gas and a solid
follow from equations 6.7 and 6.10 and the definition of entropy.

7. Using equation 10.2a for the entropy of an ideal gas, find the partial deriva-
tives of equation 8.7 and so derive the three equations of state 10.3a, b, c.
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8. Using equation 10.2b for the entropy of a solid, find the partial derivatives of
equation 8.7 to derive the three equations of state 10.4a, b, c.

9. Consider a two-dimensional ideal gas of energy E and confined to area
A, with identical molecules that are able to translate but not rotate or
vibrate.
(a) How many degrees of freedom does each molecule have?
(b) How many degrees of freedom does a system of N molecules have?
(c) What is the total internal energy of a system of 1022 such molecules at a

temperature of 300 K?
(d) Write down the number of quantum states � available to a system of N

such particles as a function of A, N , and E . (Combine all the constants
into one.)

(e) What is the entropy as a function of A, N , and E?

10. Consider a one-dimensional ideal gas having total energy E . It is confined to
a length L along the x-axis, with identical molecules that are able to translate
but not rotate or vibrate.
(a) How many degrees of freedom does a system of N molecules have?
(b) Write down the number of quantum states � available to a system of N

such particles as a function of L , N , and E . (Combine all the constants
into one.)

(c) What is the entropy of the system as a function of L , N , and E?
(d) For a one-dimensional system, the work done by it in changing its length

by dL is dW = FdL . Write dE as a function of T , F , dS, and dL , and
write dS as a function of T, F, dE , and dL .

(e) Derive an “ideal gas law” for this one-dimensional system from
F/T = (∂S/∂L)E,N .

11. The number of quantum states accessible to a certain system is given by
� = CebV 4/5

E2N , where C and b are constants.
(a) Write down an expression for the entropy in terms of V and E .
(b) Using 1/T = (∂S/∂E)V,N , find how the internal energy depends on the

temperature.
(c) How many degrees of freedom does this system have?
(d) Using p/T = (∂S/∂V )E,N , find the interrelationship between p, V , and

T .

12. Derive the ideal gas law by the method outlined in the caption to Figure 10.2.

13. The ideal gas law can be derived by a third method. Suppose that a container
of volume V has N gas molecules, each of mass m, half of which are moving
in the negative x direction with speed vx . Consider the elastic collisions of
these molecules with the wall of the container, which lies in the yz-plane and
has area A, as in Figure 10.2.
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(a) Show that the density of particles moving in the negative x direction is
N/2V .

(b) Show that the number of molecules colliding with the wall per second is
(N/2V )Avx .

(c) Now show that the impulse given to the wall per collision is 2mvx .
(d) What is the average force exerted on the wall altogether?
(e) What is the average pressure exerted on the wall?
(f) Suppose that there is a distribution of molecular speeds, so that we have

to average over v2
x . Rewrite the answer to (e) using the equipartition

theorem to express the average value of v2
x in terms of T . (If your answer

isn’t the ideal gas law, you have made a mistake somewhere.)

14. The entropy of an ideal gas is given by S = Nk ln ωc, with ωc =
C(V/N )(E/Nν)ν/2. This means that we can write out the entropy as S =
Nk ln C + Nk ln V − Nk ln N + (Nν/2)k ln E − (Nν/2)k ln Nν. How can
you justify taking the logarithm of C, V or E? Doesn’t it depend on the units
you use? How can you take the logarithm of units?

15. Calculate the chemical potential of an ideal gas from µ/T = −(∂S/∂N)E,V .
(See the above problem for the entropy of an ideal gas.) Show that the answer
you get is the same as is obtained from the integrated form of the first law,
E = T S − pV + µN .

16. For a monatomic ideal gas of N particles, we found that the internal energy
depends on the temperature only, E = (3/2)NkT , not on the volume. How
can you square this with the first law, which says that changes in the volume
cause changes in internal energy, dE = dQ − pdV + µdN?

17. The number of states accessible to a certain system is given by � =
CeaV 1/2

EbV , where C, a, and b are constants. In terms of E, V , and these
constants, find (a) the temperature, (b) the pressure (i.e., equations of state).

18. The number of states accessible to a certain system is given by � =
CeaN V 2

EbN V , where C, a, and b are constants. In terms of E, V , and
these constants, find (a) the temperature, (b) the pressure, (c) the chemical
potential.

19. Assuming that water vapor behaves as an ideal gas with six degrees of free-
dom per molecule, what is the enthalpy of one mole of water vapor at 500
◦C and 3 atm? (See Chapter 9 for the definition of enthalpy.)

20. At room temperature (295 K) and atmospheric pressure (1.013 × 105 Pa),
estimate the number of air molecules in a room 8 m by 10 m by 3 m and the
average separation between the molecules.

21. Dry air is 78% N2, 21% O2 and 1% Ar.
(a) What is the molar mass of dry air?
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(b) What is the molar mass on a humid day when the water vapor content is
3%?

22. For a certain hot air balloon, the mass of the balloon, harness, basket and
payload is 600 kg. The air temperature inside the balloon is 70 ◦C and that
outside it is 18 ◦C. Estimate the minimum volume of hot air needed if the
balloon is to lift off the ground. (The molar mass of air is about 0.029 kg and
atmospheric pressure is 1.013 × 105 Pa.)

23. We are interested in the molar entropies of some typical systems at room
temperature and atmospheric pressure (295 K, 1.013 × 105 Pa). From
Table 6.2, we can calculate the values of the constants C in equations 10.2:

Cmonatomic gas = [3.59 × 10101(J s)−3] m3/2,

Cdiatomic gas = [1.025 × 10170(J s)−5] m3/2 I,

Csolid = [6.34 × 10101(J s)−3] (m/κ)3/2 ,

where m is the molecular (or atomic) mass, I the rotational inertia, and κ

the elastic constant. Assume that the ideal gas law is valid for gases (and
hence V/N = kT/p) and that the thermal energy per particle, Etherm/N , is
(ν/2)kT . Calculate the corrected number of states per particle ωc and the
molar entropy for:
(a) helium, a monatomic gas with m = 6.7 × 10−27 kg;
(b) nitrogen gas (N2) with m = 47 × 10−27 kg, assuming that I ≈ 3.0 ×

10−46 kg m2;
(c) a typical solid with

√
m/κ ≈ 6 × 10−14 s.

24. In problem 23 above we calculated the entropy of nitrogen gas at room
temperature and atmospheric pressure (295 K, 1.013 × 105 Pa) to be
213 J/(K mole). Using this and assuming nitrogen to be an ideal diatomic
gas, calculate the internal energy, the Helmholtz free energy, the enthalpy,
and the Gibbs free energy for one mole of nitrogen at room temperature and
atmospheric pressure.

25. Calculate the change in the molar enthalpy, entropy, and internal energy for
water at atmospheric pressure (1.013 × 105 Pa) in the following processes:
At the liquid--gas transition, assume that the volume of the liquid is negli-
gible compared with that of the gas and that the ideal gas law applies to the
gas. The molar specific heat C p is for water 75.4 J/(K mole) and for steam
35.7 J/(K mole), and the latent heat of vaporization for water is 4.07 × 104

J/mole.)
(a) going from a liquid at 0 ◦C to a liquid at 100 ◦C;
(b) going from a liquid at 100 ◦C to a gas at 100 ◦C;
(c) going from a gas at 100 ◦C to a gas at 200 ◦C.
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Section C
26. Suppose that the accessible volume for a particle in a mole of a gas is given

by v − b. Using this for the volume in equation 10.2a, and the relationship
p/T = (∂S/∂V )E,N , find the equation of state for this gas.

27. At standard temperature and pressure (0 ◦C, 1 atm), a mole of liquid water
occupies a volume of 18 cm3 and a mole of water vapor occupies 22.4 liters.
(a) Find the characteristic dimension of a single water molecule by consid-

ering the volume of a mole of the liquid.
(b) Roughly what is the characteristic separation of molecules in the water

vapor?
(c) In the gas phase, how many times larger is the characteristic separation

than the molecular size?

28. Consider the gases listed in Table 10.1. For each gas, the coefficient a is re-
lated to a molecule’s polarizability and the parameter b is related to its size.
(a) Which material has the most highly polarized or polarizable molecules?
(b) For which would the a/v2 term be largest when the molecules are touch-

ing (v ≈ b)?

29. Consider a plasma of charged particles, such as ionized oxygen atoms. They
all have positive charges, so they all repel each other with a force that falls off
with separation according to 1/r2. How would you modify the van der Waals
model for this system? (Identify constants by letters such as a, b, c, . . . ,
without giving them values.)

30. Electrons have negative charges, so they experience a mutual repulsion that
falls off with increasing separation according to 1/r2. They seem to be true
point particles. That is, they seem to occupy no volume at all. How would
you modify the van der Waals model to fit a pure electron gas? (Identify
constants by letters such as a, b, c, . . . , without giving them values.)

31. The density of liquid water is 103 kg/m3 and its molecular mass is 18. The
density of liquid ethyl alcohol is 0.79 × 103 kg/m3 and its molecular mass is
46. Find the molar volumes for water and ethyl alcohol, and compare them
with the van der Waals parameter b for the gas phase of these two materials.

Section D
32. The intermolecular interactions in liquids are such that they are repulsive if

you try to compress the liquid and attractive if you try to expand it. Invent
a self-interaction term for liquids, to replace the van der Waals term, that
still has the approximately a/v2 behavior at large molecular separation (i.e.,
large molar volume) but becomes repulsive for intermolecular separations
less than (2b)1/3 (i.e., v < 2b). Your invented term might have some constants
to be determined by experiment.
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33. In an earlier chapter we found that, for liquid water, large pressure increases
give only very small changes in volume. In particular, we found that the
pressure and volume were related by an equation of the form p = A[1 +
B(1−V/V 0)], where A, B, and V0 are constants.
(a) Write down an expression that shows how the water’s entropy depends

on the volume. (Assume that E, V , and N are the independent variables,
with E proportional to T .)

(b) Write down any expression for the number of accessible states that has
the correct volume dependence.

34. The water molecule in the liquid state has six degrees of freedom (three
translational and three rotational). The variation in the potential energy
reference level u0 makes water behave in a way that is equivalent to 12
additional degrees of freedom. At 0 ◦C, u0 = −0.441 eV. Write down an
expression for u0 for liquid water as a function of temperature in the range
0−100 ◦C.

Section E
35. An atom in a particular solid is anchored in place by electrostatic inter-

actions with its neighbors. For small displacements from its equilibrium
position, the restoring force is directly proportional to the displacement:
Fx = −κ1x, Fy = −κ2 y, Fz = −κ3z, where the force constants in different
dimensions are different.
(a) Suppose that you want to make a coordinate transformation such that

the potential energy can be written in the new coordinates as V =
(1/2)κ1(x ′2 + y′2 + z′2). What are x′, y′, z′ in terms of x, y, z?

(b) Now you want to express the kinetic energy in the form [1/2m](p′
1

2 +
p′2

2 + p′2
3), where p′

1 = m1(dx′/dt), etc. What will be the values
of the masses m1, m2, m3 in terms of the mass m and the spring
constants?

36. According to the equipartition theorem, the average energy per degree of
freedom is (1/2)kT .
(a) What is the root mean square speed of a gold atom (atomic mass number

197) vibrating around its equilibrium position in a gold wire at room
temperature?

(b) How does this compare with the root mean square speed of conduction
electrons in this wire, assuming that they behave like a gas?

37. Demonstrations of the photoelectric effect require the use of ultraviolet light
of maximum wavelength 264 nm in order to kick electrons off the surface
of copper. From this, estimate the maximum energy of electrons in copper’s
conduction band. (Take the energy of an electron free in space, all by itself,
and standing still as zero.)
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38. A current of 1 ampere (1 coulomb per second) is flowing through a copper
wire of 4 mm diameter. There are 8.4 × 1028 atoms per cubic meter, and each
contributes one electron to the conduction band.
(a) How many conduction electrons are there in one centimeter of this wire?
(b) Roughly what is the net drift velocity of the conduction electrons in this

wire?
(c) How does the answer to part (b) compare with the root mean square ther-

mal velocity of free conduction electrons in the wire at room temperature
(295 K)?

39. The amplitude of vibration for atoms in a typical solid at room temperature
is about 10−11 m.
(a) How much energy is there in each degree of freedom, on average?
(b) What is the elastic (spring) constant, κ?
(c) Roughly what is the vibrational frequency for an atom of aluminum (mass

number 27)? Hint: For simple harmonic motion, do you remember how
the frequency, mass, and spring constant are related?

Section F
40. Calculate the isothermal compressibility of 47 liters of CO2 gas at room tem-

perature (295 K) and atmospheric pressure (1.013 × 105 N/m2), assuming
that it obeys the ideal gas law reasonably well.

41. In deriving the difference C p − CV = p(∂v/∂T)p we assumed that
(∂u0/∂T)p = (∂u0/∂T)V = 0. Suppose that this assumption were not true.
Use equation 10.13 to write out the exact expression for C p − CV . Then use
equation 10.8 and the chain rule to show that

Cp − CV = (R/B)(1 + a/pv2)

for a van der Waals gas.

42. Steam is under a very high pressure p = 100 atm, so that its molar vol-
ume is small (v = 0.3 liters). The van der Waals constants for steam are
a = 5.5 liters2 atm/mole2 and b = 0.030 liters/mole. What are the difference
C p − CV and the temperature T for this gas?

43. The molar heat capacity at constant volume for a rarefied gas is measured to
be CV = 33.3 J/(mole K).
(a) Does it have monatomic or polyatomic molecules?
(b) How many degrees of freedom does each molecule have?

44. The molar volume of copper is 7.1 cm3 and its coefficient of thermal vol-
ume expansion is β = 4.2 × 10−5/K. Each copper atom has six degrees of
freedom. At room temperature and atmospheric pressure, by what percent
do you expect C p and CV to differ? Which is bigger?
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45. The equation of state for some system is p2T −1/3eaV = b, where a and b are
constants.
(a) Write this in differential form, expressing dV in terms of dT and dp.
(b) Express the isothermal compressibility of this system in terms of T, V ,

and p.
(c) Express the coefficient of volume expansion for this system in terms of

T, V , and p.

46. Calculate the coefficient of volume expansion, β, for a van der Waals gas in
terms of p, v, a, and b.

47. Consider an ideal gas whose molecules have ν degrees of freedom and which
is undergoing some process that we are tracing on a p--V diagram. In terms
of p, V , and ν, what is the slope of this path at the point (p, V ) on the diagram
if the process is (a) isobaric, (b) isothermal, (c) adiabatic (pV γ = constant,
where γ = (ν + 2)/ν)?

48. Consider a system that behaves according to the van der Waals equation of
state.
(a) Write this in differential form, expressing dv in terms of dT and dp.
(b) Show that the isothermal compressibility of the system is given correctly

by our result A/pB (see Table 10.4).
(c) What is (∂p/∂T)V ?

49. An equation of state for a certain material is found to be pV 2 − aT V = bT ,
where a and b are constants. In terms of p, V, T , find (a) the coefficient of
thermal expansion, (b) the isothermal compressibility.

50. We are going to examine how well the van der Waals model works for liquids
if we use the constants for the gas phase from Table 10.1. The molar volume
of liquid water is about 0.018 liters = 0.59b.
(a) Using the van der Waals constants for water (Table 10.1), estimate the

difference C p − CV . How does this compare with the actual value at
20 ◦C listed in Table 10.2?

(b) Do the same for the coefficient of volume expansion, β.

51. Using the van der Waals model and Table 10.1, answer the following:
(a) What is the pressure exerted upon nitrogen gas in a container if at a

temperature of 500 K its molar volume is 0.5 liter?
(b) What is its coefficient of volume expansion under these conditions?

52. A system behaves according to the equation [p + a
(v−c)1/3 ](v − b

p ) = RT ,
with appropriate values of the constants a, b, c. Express the following as a
function of T, v, p:
(a) the coefficient of volume expansion, β,
(b) The isothermal compressibility, κ ,
(c) The difference in molar heat capacities, C p − CV .
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53. The equation of state relating pressure, temperature, and molar volume for
a particular material is given by (pv + A)eBv = RT, where A, B, and R are
constants. Express the following as a function of T, v, and p: (a) β, (b) κ , (c)
C p − CV .

54. (a) Starting with the equation preceding 10.13, show that for an ideal gas,
C p = [(ν + 2)/2]R.

(b) Using the specific heats listed in Table 8.1, find the effective number of
degrees of freedom per molecule for helium gas and liquid water (the
molar masses are 4.00 and 18.0 grams, respectively).



Chapter 11
Choice of variables

A Changing variables 211
A.1 The general case 211
A.2 Why switch? 213
A.3 The partial derivatives 214

B Examples 217
B.1 Testing equipartition 217
B.2 �E(T, p) 218
B.3 �S(p, V ) and �S(T, p) 219
B.4 Variations in heat capacities 219

The interdependence of so many different thermodynamical variables means that
there are several different but equivalent ways of writing any expression. So we
have many options, and we can choose whichever variables we wish. For example,
the first law is normally written with S, V, N as the independent variables:1

dE(S, V, N ) = T (S, V, N )dS − p(S, V, N )dV + µ(S, V, N )dN (11.1)

But we may prefer other variables. For example, if we have a thermometer, pres-
sure gauge, and meter stick, we may prefer to work with T, p, V and write the
first law as

dE = AdT + Bdp + CdV,

where E, A, B, C are all functions of T, p, V . Indeed, we can do this if we want
to.

In short, the redundancy among the various parameters may at first seem like a
great deal of trouble. But in this chapter we learn ways to use this interdependence
to our advantage.

1 Remember that if there is more than one type of mechanical or diffusive interaction, then there are

correspondingly more independent variables.
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thermometer

piston

pressure gauge

heat

∆T

∆V

∆p

∆Q

Figure 11.1 We are
studying a system that is
undergoing nondiffusive
interactions, and it is
convenient for us to
measure temperature and
pressure. How can we
express the changes in
other properties, such as
internal energy, volume,
or entropy (�E , �V , or
�S ) in terms of our
measured changes in
temperature and pressure
�T and �p?

A Changing variables

Suppose that we want to determine changes in some property X for a closed
system. The constraint dN = 0 reduces the number of independent variables
from three to two. If we have a thermometer and a pressure gauge, we would like
to obtain an expression of the form

dX = AdT + Bdp,

so that measurements of �T and �p can be directly converted into the desired
change �X (Figure 11.1). How do we get such an expression? There are many
ways to do it.

A.1 The general case

Imagine we have several variables v, w, x, y, . . . , of which only two are inde-
pendent. Suppose that we wish to know how one varies with two others -- for
example, how x varies with y and z. How do we answer this question?

The direct approach
The most direct way of attacking this problem is to write

dx =
(

∂x

∂y

)
z

dy +
(

∂x

∂z

)
y

dz. (11.2)

The partial derivatives may not be very useful as they stand, but if we are either
lucky or clever, we can convert them into tabulated or easily measured properties
of the system, such as pressure, temperature, heat capacities, etc. There are many
ways to do this, as illustrated below in subsection 11A.3 and as you will find in
the homework problems.
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Alternative approach
Suppose the partials of the direct approach, e.g., (∂x/∂y)z and (∂x/∂z)y , are
inconvenient or not helpful for us. If we know how x varies with respect to
any other variables then we can use the partials of these other variables instead.

For example, suppose that we do know how x varies with v and w :

dx = f dv + gdw .

How do we use this to find its dependence on y and z? First we write the derivatives
dv , dw each in terms of dy, dz:

dv =
(

∂v

∂y

)
z

dy +
(

∂v

∂z

)
y

dz, dw =
(

∂w

∂y

)
z

dy +
(

∂w

∂z

)
y

dz.

Then our expression for dx becomes

dx = f dv + gdw = f

[(
∂v

∂y

)
z

dy +
(

∂v

∂z

)
y

dz

]
+ g

[(
∂w

∂y

)
z

dy +
(

∂w

∂z

)
y

dz

]
.

Collecting the coefficients of dy and dz, we have the form we wanted,

dx = Ady + Bdz, (11.3)

with

A = f

(
∂v

∂y

)
z

+ g

(
∂w

∂y

)
z

, B = f

(
∂v

∂z

)
y

+ g

(
∂w

∂z

)
y

. (11.3′)

Although we now have the desired variables, y, z, the coefficients are a mess.
Don’t be discouraged. In a few pages we will learn how to simplify these ugly
partial derivatives.

Example 11.1 Suppose that we want to know how the internal energy changes
with temperature and pressure for a closed system (dN = 0), i.e., we want an
expression like dE = (· · ·)dT + (· · ·)dp.

We can start with the first law for nondiffusive interactions (dN = 0),

dE = T dS − pdV,

but we must write the changes dS, dV in terms of dT, dp to get the form we want:

dS =
(

∂S

∂T

)
p

dT +
(

∂S

∂p

)
T

dp, dV =
(

∂V

∂T

)
p

dT +
(

∂V

∂p

)
T

dp.

Putting these into the above expression for dE and collecting terms, we have our
desired expression for the dependence of E on T and p, i.e.,

dE = AdT + Bdp,
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with

A = T

(
∂S

∂T

)
p

− p

(
∂V

∂T

)
p

and B = T

(
∂S

∂p

)
T

− p

(
∂V

∂p

)
T

. (11.4)

A.2 Why switch?

It is clear that, through transformations such as the above, we can write thermo-
dynamic expressions in terms of virtually whichever set of variables we wish.
But why would we prefer one set of variables over another? This question is easy
to answer. It is clearly to our advantage to express the properties of a system in
terms of parameters that are either (a) constrained, or (b) easy to measure.

For example, suppose that we are interested in some property X of a system
undergoing a nondiffusive process at atmospheric pressure (dN = dp = 0), and
we have a thermometer at our disposal. Then it is advantageous to express this
property in terms of T, p, and N , because we are left simply with

dX = AdT + Bdp + CdN = AdT, (dp = dN = 0),

and dT is easy to measure.
Of course, the coefficient A has some partial derivatives in it but, using the

techniques that follow, we can write these in terms of easily measured properties
of the system.

As another example, consider the adiabatic expansion (dS = 0) and cooling
of a rising air mass that remains intact (dN = 0). These two constraints leave
just one independent variable. We should be able to express the change in some
property X in terms of just one convenient variable, such as the pressure:

dX = Adp + BdS + CdN = Adp, (ds = dN = 0).

A.3 The partial derivatives

Through the above approaches, we can express the property of interest, X, in
terms of whichever variables we wish. The resulting expressions contain partial
derivatives, some of which are readily dealt with, and some of which are not.

Many partial derivatives are easily measured properties of the system
(Figure 11.2). For example, we have already encountered (equations 8.1, 8.7,
and 10.7--10.12)(

∂ E

∂S

)
V

= T,

(
∂S

∂V

)
E

= p

T
,

(
∂S

∂T

)
V

= CV

T
,

(11.5)(
∂S

∂T

)
p

= Cp

T
,

(
∂V

∂T

)
p

= Vβ,

(
∂V

∂p

)
T

= −V κ.

where T is the temperature, p is the pressure, Cy is the heat capacity at constant y,
β is the coefficient of thermal expansion, and κ is the isothermal compressibility.
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Table 11.1. The interrelationships between S, T, p, V for nondiffusive processes, written in terms of
the easily measured properties of the system, Cp, CV , β, κ, T, p, V. The reciprocal of each relationship
is also valid

(
∂S

∂T

)
p

= Cp

T

(
∂S

∂V

)
T

= β

κ

(
∂T

∂V

)
S

= − Tβ

CV κ(
∂S

∂T

)
V

= CV

T

(
∂S

∂V

)
p

= Cp

T Vβ

(
∂T

∂V

)
p

= 1

Vβ(
∂S

∂p

)
T

= −Vβ

(
∂T

∂p

)
S

= T Vβ

Cp

(
∂p

∂V

)
S

= − Cp

VCV κ(
∂S

∂p

)
V

= CV κ

Tβ

(
∂T

∂p

)
V

= κ

β

(
∂p

∂V

)
T

= − 1

V κ

The definitions of the heat capacities Cp and CV , the coefficient of thermal expansion β, and the
isothermal compressibility κ are as follows:

Cp =
(

∂ Q

∂T

)
p

= T

(
∂S

∂T

)
p

, CV =
(

∂ Q

∂T

)
V

= T

(
∂S

∂T

)
V

, β =
(

1

V

∂V

∂T

)
p

, κ = −
(

1

V

∂V

∂p

)
T

Figure 11.2 For a gas,
the water, or a solid, how
would you measure the
coefficient of thermal
expansion (β), isothermal
compressibility (κ), or
heat capacity (Cp or CV ),
using the equipment in
this figure? (Assume that
you can measure heat
transfer, �Q = C(p or V)�T ,
and volume change, �V.)

Other partial derivatives may also be converted into measurable properties using
methods outlined below. These techniques are applied to the commonly encoun-
tered partial derivatives for nondiffusive interactions (i.e., all those involving
S, T, p, V ) in homework problems 1--12, with results listed in Table 11.1.

1 Maxwell’s relations
Maxwell’s relations (Table 9.3) constitute a valuable resource. If you see a par-
tial derivative you don’t like, you can use the appropriate Maxwell’s relation to
substitute another for it. Of the twelve, those in the first column, M1, M4, M7,
and M10, apply exclusively to nondiffusive interactions.
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2 Chain rule
Second, you can use the chain rule. For example, suppose you have a derivative
(∂s/∂t)u,v that you don’t like. You can use the chain rule to express this in the
form (

∂s

∂t

)
u,v

=
(

∂s

∂x

)
u,v

(
∂x

∂t

)
u,v

. (11.6)

What should you choose for the intermediate variable x? Anything you want!
Since u and v are both held constant, there is only one independent variable, and
you can choose it to be any other variable that is convenient for you.

Example 11.2 Suppose that we are working on some nondiffusive process
(dN = 0) where there are two independent variables and we run into the deriva-
tive (∂S/∂V )p. This could be determined by measuring the change in volume
�V as heat T�S is added at constant pressure, giving us the needed (�S/�V )p.
But there are other alternatives.

We could use Maxwell’s relation M7 to turn it into (∂p/∂T )S = (�p/�T )S ,
which we could measure by compressing the system adiabatically (S = constant)
and measuring the changes in pressure �p and temperature �T . But maybe we
don’t care to do that either.

So let’s try using the chain rule. Since p and N are being held constant, there
is only one independent variable. What should we choose as an intermediate
variable?

Any would work. But the temperature T would be a good choice, because
changes in S, V, T are related through heat capacities and coefficients of thermal
expansion. The chain rule with T as the intermediate variable gives(

∂S

∂V

)
p

=
(

∂S

∂T

)
p

(
∂T

∂V

)
p

.

To transform these partials we could use equations 11.5 or Table 11.1, or we
could work them out from first principles:(

∂S

∂T

)
p

= 1

T

(
∂ Q

∂T

)
p

= Cp

T
,

(
∂T

∂V

)
p

=
[(

∂V

∂T

)
p

]−1

=
[

V
1

V

(
∂V

∂T

)
p

]−1

= (Vβ)−1.

With this, we have for our partial derivative(
∂S

∂V

)
p

=
(

∂S

∂T

)
p

(
∂T

∂V

)
p

= Cp

T Vβ
.

That is, we have transformed our undesirable partial derivative into easily mea-
surable and tabulated properties of the system.
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3 Ratios
A third way of transforming a partial derivative into something more desirable
goes as follows. Suppose that you wish to transform (∂x/∂y)z into something
else. Noting that z is constant, we write dz in terms of dx and dy:

0 = dz =
(

∂z

∂x

)
y

dx +
(

∂z

∂y

)
x

dy.

From this, we can solve for the ratio dx/dy at constant z, which is the defini-
tion of the partial derivative (∂x/∂y)z :(

∂x

∂y

)
z

= − (∂z/∂y)x

(∂z/∂x)y

= −
(

∂z

∂y

)
x

(
∂x

∂z

)
y

. (11.7)

Exercise caution when using this relationship, because it is tricky. The right side
looks deceptively similar to the chain rule, but in fact it is quite different. Notice
in particular the negative sign, and the variables that are being held constant.

Example 11.3 Use the above technique to write the derivative (∂T/∂p)V as
something more desirable.

Since V is held constant and T and p are the variables of interest, we write

0 = dV =
(

∂V

∂T

)
p

dT +
(

∂V

∂p

)
T

dp.

This gives (
∂T

∂p

)
V

= − (∂V /∂p)T

(∂V /∂T )p

= V κ

Vβ
= κ

β
.

Summary of Section A

There is a great deal of interdependence among thermodynamical variables. It is

usually most convenient to use as independent variables those that are either

(a) constrained, or (b) easy to measure.

To express how property x varies with the variables y and z we could write

(equation 11.2)

dx =
(

∂x

∂y

)
z

dy +
(

∂x

∂z

)
y

dz,

or we could start with some already known relationship between variables (e.g. the

first law) and then use the technique of equation 11.2 to eliminate the variables we

don’t want by expressing them in terms of more convenient variables.

The resulting expressions contain partial derivatives of the form (∂x/∂y)z , which

we may wish to avoid. We would prefer to write them in terms of easily measured

properties of the system such as temperature, pressure, volume, heat capacities,

compressibilities, and coefficients of thermal expansion. There are three ways of

doing this.
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1. Use Maxwell’s relations.

2. Use the chain rule with an intermediate variable t chosen for convenience (equation 11.6):(
∂x

∂y

)
z

=
(

∂x

∂t

)
z

(
∂t

∂y

)
z
.

3. For a variable z that is being held constant, express dz in terms of dx and dy, which gives

(equation 11.7) (
∂x

∂y

)
z

= − (∂z/∂y)x

(∂z/∂x)y
= −

(
∂z

∂y

)
x

(
∂x

∂z

)
y
.

Table 11.1 lists the results of these approaches for all the commonly encountered

partial derivatives for nondiffusive interactions.

B Examples

We now use a few more examples to illustrate the above techniques for expressing
a given property in terms of whichever variables we wish.

B.1 Testing equipartition

We derived the equipartition theorem (Section 4E and subsection 8A.3) using the
assumptions that the potential energy reference level u0 is constant and that the
energy in each degree of freedom can be expressed in the form bξ 2. A consequence
of these assumptions is that changes in the internal energy of a system are related
to changes in temperature according to

dE = Nν

2
kdT, (11.8)

We can test the accuracy of this result experimentally by rewriting the first law
for closed systems in terms of T, V instead of S, V:

dE = T dS − pdV = T

[(
∂S

∂T

)
V

dT +
(

∂S

∂V

)
T

dV

]
− pdV .

Using Table 11.1 for the partial derivatives, this becomes

dE = CV dT +
(

Tβ

pκ
− 1

)
pdV .

This agrees with the prediction of the equipartition theorem (11.8) if

CV = Nν

2
k and

Tβ

pκ
− 1 = 0.
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So either of these could be used to test for violation of the equipartition theorem;
we say that the “degree of violation” is given by∣∣∣∣ 2CV

Nνk
− 1

∣∣∣∣ or

∣∣∣∣Tβ

pκ
− 1

∣∣∣∣ . (11.9)

Example 11.4 Let us test the equipartition theorem for a van der Waals gas, for
which the equation of state is (equation 10.7):(

p + a

v2

)
(v − b) = RT .

In subsection 10F.3 we derived the isothermal compressibility κ and coefficient
of thermal expansion β for a van der Waals gas (Table 10.4):

κ = 1

p

A

B
, β = R

pv

1

B
,

where the two factors A and B are given by (equation 10.19):

A =
(

1 − b

v

)
, B =

(
1 − a

pv2
+ 2ab

pv3

)
,

and go to unity in the limit of rarefied gases (v � b). If we insert these expressions
into the second of the violation tests given in equation 11.9 and use the van der
Waals equation to write the product RT in terms of p and v, we get (homework)

degree of violation =
∣∣∣∣Tβ

pκ
− 1

∣∣∣∣ = a

pv2
. (11.10)

The physical reason for this violation is the weak intermolecular attraction
( p → p + a/v2), which gives a small amount of potential energy that is not of
the appropriate bξ 2 form. Therefore, the degree of violation of the equipartition
theorem is determined by how this assumption-violating a/v2 term compares
with the unmodified ideal gas pressure, p.

B.2 �E(T, p)

Suppose that we wish to measure changes in internal energy using a thermometer
and pressure gauge. In Example 11.1 we saw that for a closed system (dN = 0)
we could write the change in internal energy as a function of T and p. For small
but finite changes, the expression for dE becomes

�E = A�T + B�p,

with (11.4)

A = T

(
∂S

∂T

)
p

− p

(
∂V

∂T

)
p

and B = T

(
∂S

∂p

)
T

− p

(
∂V

∂p

)
T

.
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Although this is the form we want, the partial derivatives are scary. Fortunately,
using the relationships in Table 11.1 we can transform all four partial derivatives
into easily measured properties of the system, getting

�E = (Cp − pVβ)�T + (pκ − Tβ)V�p. (11.11)

B.3 �S( p, V ) and �S(T, p)

Next, suppose that we wish to know the entropy change �S with changes in
pressure and volume �p, �V for a closed system (�N = 0). We could begin by
writing

�S =
(

∂S

∂p

)
V

�p +
(

∂S

∂V

)
p

�V .

We can then express these partial derivatives in terms of more familiar parameters
by either consulting Table 11.1 or using Maxwell’s relations and the chain rule.
Either way, this expression for the change in entropy becomes (homework)

�S = CV κ

βT
�p + Cp

T Vβ
�V . (11.12)

This formula will allow us to determine the small change in entropy �S during
some process by measuring the corresponding small changes in pressure and
volume �p, �V .

In the homework problems a similar method is used to show that changes in
entropy can be determined from changes in temperature and pressure, according
to2

�S = Cp

T
�T − Vβ�p. (11.13)

B.4 Variations in the heat capacities

Suppose that we know the heat capacity CV at temperature T for a system at
volume V1, and we wish to know what it would be at the same temperature but
a different volume, V2. We need not make another measurement, providing that
we know the equation of state relating T, p, V .

At volume V2, the heat capacity is

CV2 = CV1 +
∫ V2

V1

dCV = CV1 +
∫ V2

V1

(
∂CV

∂V

)
T

dV .

From the definition of heat capacity, and using ∂Q/∂T = T∂S/∂T ,

∂CV

∂V
= ∂

∂V

∂ Q

∂T
= T

∂2 S

∂V ∂T
= T

∂

∂T

∂S

∂V
,

2 If �S = �Q/T , why is there the second term? (Hint: Cp�T = �Q only if the pressure is constant.)
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where the independent variables are T, V . That is, the partial with respect to
one implies that the other is held constant. Using Maxwell’s equation M4, this
becomes (homework)

(
∂CV

∂V

)
T

= T

(
∂2 p

∂T 2

)
V

,

and therefore the heat capacity at another volume but the same temperature is
given by

CV2 = CV1 + T

∫ V2

V1

(
∂2 p

∂T 2

)
V

dV . (11.14)

The integrand can be calculated from the equation of state relating T, p, V .
In the homework problems the same procedure can be followed to derive a

similar result for Cp:

Cp2 = Cp1 − T

∫ p2

p1

(
∂2V

∂T 2

)
p

dp. (11.15)

Again, the integrand can be calculated from the equation of state.

Summary of Section B

In this section, we have used some specific examples to illustrate how to express the

change in any property in terms of the changes in any other two, for nondiffusive

processes.

The equipartition theorem assumes that the energy in each degree of freedom

can be written as ε = bξ 2, where b is a constant and ξ is a coordinate, and that the

potential energy reference level u0 is constant. Under these assumptions, it predicts

that the change in internal energy of a system is given by (equation 11.8)

dE = Nν

2
kdT .

Applying the techniques of the previous section to partial derivatives, we can write

the first law as

dE = CV dT +
(

Tβ

pκ
− 1

)
pdV .

Comparing these two equations, we can test the degree to which real systems violate

the equipartition theorem by either of the following (equation 11.9):

degree of violation =
∣∣∣∣ 2CV

Nνk
− 1

∣∣∣∣ or

∣∣∣∣Tβ

pκ
− 1

∣∣∣∣ .
Applying this test to the van der Waals model for gases reveals that its violation of

equipartition is due to the long-range attraction between molecules.
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Further examples give the change in internal energy in terms of changes in

temperature and pressure (equation 11.11)

�E = (Cp − pVβ)�T + (pκ − Tβ)V�p,

the change in entropy in terms of changes in pressure and volume or changes in

temperature and pressure (equations 11.12, 11.13)

�S = CV κ

βT
�p + Cp

T Vβ
�V, �S = Cp

T
�T − Vβ�p,

and the value of the heat capacities at one pressure or volume in terms of their value

at another (equations 11.14, 11.15),

CV2 = CV1 + T

∫ V2

V1

(
∂2 p

∂T 2

)
V

dV,

Cp2 = Cp1 − T

∫ p2

p1

(
∂2V

∂T 2

)
p

dp.

Problems

Section A
In problems 1--12 we examine all the various possible partial derivative relation-
ships between the variables S, T, p, V for nondiffusive interactions (dN = 0),
in order to write them in terms of easily measurable properties of the system,
Cp, CV , β, κ, T, p, V . For each, you should demonstrate that the given conversion
is correct. (In some cases, suggestions for a possible approach are provided in
parentheses.)

1. (∂S/∂T)p = Cp/T

2. (∂S/∂T)V = CV /T

3. (∂S/∂p)T = −Vβ (M10)

4. (∂S/∂p)V = κCV /βT (chain rule, and the answer to problem 8 below.)

5. (∂S/∂V )T = β/κ (chain rule, and the answer to problem 3 above.)

6. (∂S/∂V )p = Cp/TVβ (chain rule)

7. (∂T/∂p)S = T Vβ/Cp (M7, and the answer to problem 6 above.)

8. (∂T/∂p)V = κ/β (ratios, write dV = 0 in terms of dT and dp.)

9. (∂T/∂V )S = −βT/κCV (M1, and the answer to problem 4 above.)

10. (∂T/∂V )p = 1/Vβ

11. (∂p/∂V )S = −C p/(CV Vκ) (ratios, write dS = 0 in terms of dp and dV,
and use the results of problems 4 and 6 above. Or use the chain rule and the
results from problems 7 and 9 above.)



222 Introduction to thermodynamics and statistical mechanics

12. (∂p/∂V )T = −1/V κ

For problems 13 through 20, you will demonstrate how one differential
depends on two others for nondiffusive interactions. For each case derive
an expression of the form dx(y, z) = Ady + Bdz. Each problem will have
two parts.

(a) First, the coefficients A and B are expressed as the appropriate partial
derivatives.

(b) Then these partial derivatives are converted into easily measurable
properties of the system, Cp, CV , κ, β, T, p, V , using the results to
problems 1--12 above or Table 11.1.

13. dV (p, T )

14. dE(p, T ) (Hint: Start with dE = T dS − pdV . Rewrite dS and dV in terms
of dp and dT. Then use M10.)

15. dE(T, V ) (Hint: For any expression that involves E it is easiest to start with
the first law.)

16. dV (S, T )

17. dE(p, V )

18. dE(S, T )

19. dT (p, V )

20. dS(T, p)

21. dS(E, p)

22. You wish to know how the pressure varies with temperature for a sys-
tem that has a fixed number of particles and is confined to a fixed
volume.
(a) What are the constraints?
(b) What is the number of independent variables?
(c) Write down an expression for dp in terms of dT, using the appropriate

partial derivative.
(d) Now replace the partial derivative with the properties Cp, CV , κ, β,

T, p, V as appropriate.

23. You have a system that has a fixed number of particles held at fixed volume,
and you wish to know how the entropy varies with the temperature.
(a) What are the constraints?
(b) Write down an expression for dS in terms of dT, using the appropriate

partial derivative.
(c) Now replace the partial derivative with the properties Cp, CV , κ, β,

T, p, V as appropriate.
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24. Find an expression with appropriate partial derivatives for each of the
following and then replace the partial derivatives with the properties
Cp, CV , κ, β, T, p, V as appropriate (for part (a), you might have to use the
first law to find the partials of V with respect to E and S):
(a) dV (E, S), (b) dV (p, S), (c) dV (p, T ), (d) dS(p, T ).

25. We are studying a system that is undergoing diffusive interactions at constant
pressure and temperature.
(a) How many independent variables are there?
(b) Write down an expression for the change in entropy dS with respect to

the number of particles dN.
(c) See if you can convert the above partial derivative into another, using

any of Maxwell’s relations.

26. We are studying a system that is undergoing diffusive interactions at constant
pressure and temperature.
(a) Starting with the first law, dE = T dS − pdV + µdN , write down an

expression for dE in terms of dN.
(b) Of the two partial derivatives appearing in this expression, convert both

to other partial derivatives, using the appropriate Maxwell’s relations.

27. A certain solid is not isotropic, having different coefficients of linear expan-
sion in each dimension: αx = 0.5 × 10−5/K , αy = 1.5 × 10−5/K , αz =
2.0 × 10−5/K . What is its coefficient of volume expansion, β? (Hint : X ′ =
X0(1 + αx�T), etc., and V ′ = X ′Y ′Z ′. So what is V ′ in terms of V0?)

28. Suppose you have available the equipment and materials of Figure 11.2.
How would you measure the coefficient of volume expansion for (a) the gas,
(b) the water, (c) the solid? (Hint: You might need to use the liquid to help
you with the solid. Assume that you can measure the volume of the solid by
the volume of water displaced.)

29. Suppose you have available the equipment and materials of Figure 11.2. How
would you measure:
(a) the heat capacity at constant volume for the gas,
(b) the heat capacity at constant pressure for the liquid,
(c) the isothermal compressibility of the liquid,
(d) the isothermal compressibility of the solid?

30. Prove that (∂x/∂y)z = −(∂x/∂z)y(∂z/∂y)x .

Section B
31. Derive equation 11.9, starting from the first law for nondiffusive interactions.

32. Derive equation 11.10 for a van der Waals gas from equation 11.9, and the
expressions for κ and β given in Example 11.4.
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33. For water vapor, the van der Waals constants are a = 5.46 liter2 atm/
mole2 and b = 0.0305 liter/mole.
(a) At a temperature of 500 K, the molar volume is about 7 liters when the

pressure is 5.8 atm. For this particular system, estimate the degree of
violation of equipartition.

(b) Repeat for water vapor when its molar volume is 0.1 liters under a
pressure of 43 atm.

34. (a) Starting from the first law for nondiffusive interactions, derive equa-
tions 11.4.

(b) Show that equation 11.11 follows from equation 11.4.

35. Derive the result 11.12 for �S(p, V ).

36. Show that (∂CV /∂V )T = T (∂2p/∂T2)V .

37. Derive the result 11.15 using the definition of the heat capacity Cp and one
of Maxwell’s relations.

38. Use result 11.14 to show that CV does not depend on the volume for (a) an
ideal gas, (b) a van der Waals gas.

39. (a) Using the method of ratios, show that (∂p/∂T)V = β/κ.

(b) The coefficient of thermal expansion and the isothermal compressibil-
ity for steel are 3.5 × 10−5/K and 7.1 × 10−12/Pa, respectively, and for
water are 2.1 × 10−4/K and 5.0 × 10−10/Pa, respectively. For each, what
pressure increase would be required to keep the volume constant if the
temperature were raised by 1 ◦C?

40. (a) Show that for a closed system �S = (Cp/T )�T − Vβ�p (equation
11.13).

(b) For water, the molar heat capacity is 75.3 J/(K mole), the molar volume is
1.8 × 10−5 m3/mole, and the coefficient of thermal expansion is 2.1 ×
10−4/K. What is the change in molar entropy of liquid water if you
heat it up from 0 ◦C to100 ◦C at atmospheric pressure, at the same time
increasing the pressure by 10 000 atm? (1 atm = 1.013 × 105 Pa. You
need to integrate.)

41. Use the result 11.15 to show that Cp:
(a) does not depend on pressure, for an ideal gas;
(b) does depend on pressure, for a van der Waals gas, the integrand being

equal to(
∂2v

∂T 2

)
p

= − 2a R2

(pvB)3

(
1 − 3b

v

)
with B = 1 − a

pv2
+ 2ab

pv3
.

42. Give the Maxwell’s relations corresponding to M1, M4, M7, and M10 for a
system for which there is magnetic interaction rather than volume expansion.
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The external magnetic field B is in the z direction and the z-component of the
system’s magnetic moment is M. (Since dW = −BdM, you replace pdV
by −BdM in the first law.)

43. Find an expression for �E(T,M) for a system involved in thermal and
magnetic interaction only. The external magnetic field B is in the z-direction
and the z-component of the system’s magnetic moment is M. (Use dW =
−BdM; the expression will have some partial derivatives in it.)
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In many important processes one or more of the thermodynamic variables are
constrained (Figure 12.1). Isobaric processes take place at constant pressure,
isothermal processes at constant temperature, and isochoric processes at con-
stant volume. If there is no heat exchange with the surroundings, the process
is adiabatic. If there is no exchange of particles, the process is nondiffusive.
Each constraint simplifies our studies by reducing the number of independent
variables.

A Isobaric processes

A considerable number of processes occur in closed systems at a constant pressure
(Figure 12.1a). The two constraints dp = 0 and dN = 0 ensure that all properties
of the system depend on just one independent variable. Using the techniques of
the preceding chapter, we can choose this variable to be whatever we wish.

Example 12.1 How does internal energy depend on temperature for isobaric,
nondiffusive, processes?

226
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Figure 12.1 (a)
Processes throughout
vast regions of space are
isobaric and/or
isothermal. The
gravitational collapse of
interstellar clouds, which
forms stars, is nearly
adiabatic. (Courtesy of
NASA) (b) A thunderhead
is the result of the rapid
adiabatic cooling of air as
it rises and expands.
(Plymouth State
University photograph,
courtesy of Bill Schmitz)
(c) The physical and
chemical processes
carried out through
marine plankton are
isobaric and isothermal.
(Courtesy of Mark Moline,
California Polytechnic
State University)

(b)
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(c)
Figure 12.1 (cont.)

We choose our variables to be N , p, T because N and p are constant and we
are measuring changes in T. The change in internal energy is given by the first
law,1

dE = T dS − pdV = T

(
∂S

∂T

)
p

dT − p

(
∂V

∂T

)
p

dT .

With the help of Table 11.1 we can convert these partial derivatives to give

dE = (Cp − pVβ)dT (isobaric processes). (12.1)

This is what we wanted. If we know how the properties Cp, p, V , and β depend on
T then we can integrate equation 12.1 to find the relationship for finite changes.

B Isothermal processes

Isothermal nondiffusive processes also operate under two constraints, dN =
dT = 0. So again, there is just one remaining independent variable, which we are
free to choose.

1 Note the convention that we usually display only two variables for nondiffusive (dN = 0) processes.
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Example 12.2 How does a system’s internal energy vary with volume for isother-
mal, nondiffusive, processes (dT = dN = 0)?

We choose our variables to be T, N , V because T and N are constant and we
are measuring changes in V. The change in internal energy is given by the first
law:

dE = T dS − pdV = T

(
∂S

∂V

)
T

dV − pdV .

Again, we use Table 11.1 to convert the partial derivative to easily measured
properties:

dE =
(

Tβ

κ
− p

)
dV (isothermal processes). (12.2)

In the homework problems, this result is used to show that the internal energy of
an ideal gas depends only on its temperature, not on its volume.

C Adiabatic processes

A process during which there is no heat transfer is called adiabatic (dQ = 0). Many
processes occur sufficiently rapidly that there can be no significant heat transfer
with the surroundings yet sufficiently slowly that the system itself remains in
equilibrium. For these adiabatic and “quasistatic” processes, we can write

dQ = T dS = 0 (adiabatic and quasistatic).

(For a nonequilibrium adiabatic process, such as an adiabatic free expansion,
entropy is not conserved: during such a process dQ = TdS does not hold.)

C.1 Examples

Very little heat is transferred during the rapid compression of gases in the cylinder
of an engine. Yet the speed of the piston is much slower than the thermal motion
of the gas molecules, so the gas remains in equilibrium throughout this adiabatic
process. Convection in many fluids involves quasistatic adiabatic expansion and
compression as the materials rise and fall. Examples include convection in the
Earth’s mantle, in stellar interiors, in the ocean, and in planetary atmospheres.
Much of our weather is caused by adiabatic processes in air. As air moves across
the Earth or changes elevations, it encounters different pressures that produce
adiabatic changes in volume and temperature.

As a fluid rises, it encounters lower pressure, so it expands and cools adia-
batically. To determine whether a fluid is stable against vertical convection, we
compare the adiabatic cooling rate with the existing vertical temperature gradient
in the fluid, called the “lapse rate” (Figure 12.2). If the adiabatic cooling rate is
greater than the lapse rate then the rising fluid becomes cooler than its surround-
ings and stops rising. In our atmosphere, such stability against vertical convection
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lapse rate
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20 °C 20 °C 20 °C

unstable - upward convection stable - thermal inversion

Figure 12.2 Rising air expands and cools as it encounters the lower pressure at
higher elevation. Whether it continues to rise depends on whether it cools faster or
slower with elevation than the lapse rate for the air around it. (Left) If it cools more
slowly than the lapse rate, it will remain warmer than its surroundings and continue
to rise. (Right) If it cools more rapidly than the lapse rate, it will become cooler than
its surroundings and stop rising. Such a condition is described as a ‘‘thermal
inversion.”

is known as “thermal inversion” (Figure 12.2). We often see this condition in the
early morning when the air near the ground is cooler than that above. Smoke and
car fumes are trapped near the ground, unable to rise, and so “smog” forms in
urban areas. Conversely, if the adiabatic cooling rate, is smaller than the lapse rate
then the rising fluid remains warm compared with its surroundings and continues
to rise.

The adiabatic expansion and cooling of rising moist air masses causes moisture
to condense within the air mass, and the release of latent heat warms the air mass
and fuels further rising. This is why thunderheads billow upwards so violently,
and it is the fuel for violent storms, including hurricanes and typhoons. The
adiabatic cooling of rising air is also the reason why cool air and snow are found
at the top of a mountain rather than at its base. (After all, wouldn’t you otherwise
expect the colder air be denser and sink to the base of the mountain?)

C.2 Interrelationships between T, p, and V

For quasistatic adiabatic nondiffusive processes, the two constraints dN = dS =
0 ensure that there is only one independent variable. Therefore, any one property
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can be expressed in terms of any one other. For example,

dT =
(

∂T

∂p

)
S

dp, dT =
(

∂T

∂V

)
S

dV, dV =
(

∂V

∂p

)
S

dp.

Using the techniques of the last chapter, or Table 11.1, we can convert the above
partial derivatives to get the following results for quasistatic adiabatic processes:

dT

T
= Vβ

Cp
dp,

dT

T
= − β

κCV
dV,

dV

V
= −κCV

Cp
dp. (12.3)

The properties T, V, Cp, CV , κ are always positive, and the coefficient of ther-
mal expansion, β, is usually positive.2 Consequently, the equations 12.3 tell us
that the following must be true for isentropic nondiffusive processes:

� increasing pressure causes increased temperature (provided β is positive);
� increasing volume causes decreased temperature (provided β is positive);
� increasing pressure causes decreased volume.

C.3 Adiabatic processes in ideal gases

For quasistatic adiabatic processes in ideal gases,

dE = −pdV (first law),

pdV + V dp = NkdT (differential form of ideal gas law),

dE = Nν

2
kdT (equipartition).

(12.4)

These three equations, which relate the four differentials dE, dT, dV, dp, allow
us to find the relationship between any two of these by eliminating the other
two. We could also get the same relationships from equations 12.3 above,
using the values of the parameters Cp, CV , β, κ for ideal gases obtained in
subsection 10F.3:3

CV = ν

2
R, Cp = CV + R, β = 1

T
, κ = 1

p
.

Either approach gives us the following relationships for ideal gases:

dT

T
=

(
1 − 1

γ

)
dp

p
,

dT

T
= (1 − γ )

dV

V
, γ

dV

V
= −dp

p
, (12.5)

where

γ = Cp

CV
= ν + 2

ν
. (12.6)

2 An important exception is water between 0 ◦C and 4 ◦C.
3 Use Nk = n R for converting between number of molecules N and number of moles n.



232 Introduction to thermodynamics and statistical mechanics

By integrating the three equations 12.5, we find that for quasistatic adiabatic
processes in ideal gases,4

T V γ−1 = constant, T p1/γ−1 = constant, pV γ = constant. (12.7)

Summary of Sections A--C

Any two constraints on a system leave only one independent variable, so any one

property can be expressed as a function of any other. For example, we can write the

change in internal energy of a system for isobaric nondiffusive processes as

(equation 12.1)

dE = (Cp−pVβ)dT

and for isothermal nondiffusive processes as (equation 12.2)

dE

(
Tβ

κ
− p

)
dV .

Also common and important are those processes that occur sufficiently rapidly

that essentially no heat enters or leaves the system during the process. Such

isentropic (adiabatic and quasistatic) nondiffusive processes have only one

independent variable, so any one variable can be written in terms of any other. For

these processes (equation 12.3),

dT

T
= Vβ

Cp
dp,

dT

T
= − β

κCV
dV,

dV

V
= −κCV

Cp
dp.

For the particular case of ideal gases, the factors in the coefficients can be evaluated

from the equation of state, and so equations 12.3 can be integrated, giving

(equations 12.7, 12.6)

T V γ−1 = constant, T p1/γ−1 = constant, pV γ = constant,

with

γ = Cp

CV
= ν + 2

ν
.

These same equations may also be derived from the differential forms of the first

law, the ideal gas law, and equipartition.

D Reversibility

The second law demands that, during any process, the total entropy of all the
interacting systems must either increase or remain constant:

�S0 = �S1 + �S2 + �S3 + · · · ≥ 0.

4 From any one of these we can get the other two simply by using the ideal gas law to change variables.
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If the total entropy increases then the process cannot be reversed, because the
reversed process would require a decrease in entropy, in violation of the second
law. Therefore, for a process to be reversible, there must be no change in total
entropy (�S0 = 0).

In Section 9B we found that when two systems are interacting thermally,
mechanically, and/or diffusively, the change in entropy of the combined system
is (equation 9.7)

dS0 = dS1 + dS2

= 1

T2

[(
T2 − T1

T1

)
dQ1 + (p1 − p2) dV1 − (µ1 − µ2) dN1

]
≥ 0.

We can see immediately that in order for a process to be reversible (i.e., dS0 = 0)
then:

� if heat is transferred, the temperatures must be equal;
� if volume is transferred, the pressures must be equal;
� if particles are transferred, the chemical potentials must be equal.

Although we have been thinking of two separate interacting systems, these
results apply equally to interactions between different parts of the same system.
If the system initially has some uneven distribution of temperatures, pressures,
or chemical potentials within it, then as it moves toward equilibrium, the changes
that occur cannot be reversed.

If processes cannot be reversed when entropy increases, then how can a refrig-
erator remove heat that has leaked inside it (the first term in the equation) or a
fallen book be put back on the shelf (the second term), or a pump put air back
into a tire once it has leaked out (the third term)? For these reverse processes to
occur, another system must be involved, such as the fuels consumed to produce
the electricity or to power the muscles. Even though you may reverse these pro-
cesses in your kitchen or library, or in the tire, you burn fuels to do this. So in
each case at least one of the systems cannot be brought back to its starting point.
The world’s total entropy has increased and the full process cannot be reversed.

Notice that reversibility involves considerations of entropy, not heat transfer
alone. Because the two are closely related, we sometimes confuse them. With the
help of equation 9.7 above, you should be able to think of adiabatic processes
(dQ = 0) that are not reversible. Examples would be mechanical interactions
where the two pressures differ, or diffusive interactions where the two chemical
potentials differ. Likewise, you should be able to think of nonadiabatic processes
(dQ 
= 0) that are reversible. If the temperatures of two systems are the same,
then the entropy does not increase when heat is transferred between them.

Example 12.3 A flying ball of putty smashes into a wall (Figure 12.3). Is the
process reversible?
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Figure 12.3 A ball of putty before and after its collision with a wall. The motion of
some representative molecules is indicated. During the collision the coherent
component of their motion (translation) is transformed into random thermal motion.
Since there are far more states available for the molecules to oscillate in random
directions than for them to all move in the same direction, the entropy increases
during the collision.

Consider the motion of the putty molecules before the collision. In addition
to their thermal motion, there is an overall translation. During the collision, the
translational kinetic energy gets transformed into additional random motion of
the molecules (hence the putty and the wall become hotter). There are far more
states available for the molecules to move in random directions at various speeds
than for them all to move the same direction at the same speed. That is, the entropy
of the states of random motion is far greater than that of the coherent collective
motion.

Since the entropy has increased, the process is irreversible. We would never
see the putty later cool down and fly back along the path it came. This would
require all the molecules to be moving in the same direction at the same instant,
which is very improbable -- a state of very low entropy. The entropy simply does
not decrease once it has increased.

This last example can be made into a more general statement regarding friction.
In addition to their thermal motion, the molecules in a moving object are going in
the same direction at the same speed, involving states of rather low entropy. Fric-
tion transforms this coherent motion into more random motions, for which there
are far more available states; hence the entropy is higher entropy. Consequently,
friction always increases the total entropy, and so whenever friction is present,
the process is irreversible. For reasons like these, increased thermal motion is the
end product or “waste basket” of all other forms of energy.

E Nonequilibrium processes

Most of the tools we develop in this course are for systems in equilibrium, that is,
for quasistatic processes. In general, nonequilibrium processes are more difficult
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ice

direction of flow through the plug

low pressure, pfhigh pressure, pi

porous plug

Vi Vf

Figure 12.4 (Left) One
way to cool a gas is to
compress it, cool it with
something cold, and then
insulate it and let it
expand, doing work and
cooling further as it does.
(Right) The throttling
process involves an
insulated tube with a
constriction, such as a
porous plug. The higher
pressure on the left forces
the gas through the
constriction, which
expands from volume Vi

to volume Vf as it enters
the region of lower
pressure on the right. It
does work pfVf on the gas
ahead of it as it pushes it
on down the tube and
likewise receives work
piVi from the gas behind
it.

to study, because we do not have these powerful tools to work with. Nonetheless,
insights gained from equilibrium studies help us understand some nonequilibrium
processes as well.5

In most materials mechanical equilibrium is attained quickly and thermal
equilibrium rather slowly, with relaxation times related to the speed of sound and
thermal conductivity, respectively. Heat transfer proceeds particularly slowly in
gases because they are such poor conductors of heat.

E.1 Joule--Thompson process

The cooling of gases is important both in refrigeration and liquefaction. To cool
a gas, we could do the following (Figure 12.4, on the left):

� compress it,
� then hold it against something cold to remove as much heat as possible,
� finally, let it expand, cooling further as it does.

This last step is tricky. Containers that are sufficiently strong to withstand large
pressure changes tend to have large heat capacities. So much of the energy lost
to expansion would be regained from the container walls, thereby defeating our
purpose.

This problem can be avoided in the Joule--Thompson, or “throttling,” process,
for which the expanded cooled gas moves to a different part of the container
(Figure 12.4, on the right). A gas is forced through a tube in which there is a
constriction of some kind. Before getting to the constriction the gas is under

5 For a system that is not in equilibrium, the temperature, pressure, and chemical potential may vary

from one region to another, or we may not be able to define them at all. Consequently, we must

be clever in using familiar tools. For example, we often think of a nonequilibrium system as being

composed of subsystems, each of which has a well-defined temperature, pressure, and chemical

potential. Then we imagine that changes happen incrementally, so that each subsystem is close to

equilibrium at all times.
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high pressure. Upon passing through the constriction, it enters a region of lower
pressure, where it expands and cools.

The change in temperature can be expressed in terms of the change in pressure
alone, because there are two constraints. One of these is that the process is
nondiffusive (dN = 0), because no other particles join or leave the gas in the
process. The other is that the enthalpy is constant (dH = 0), as we will now
demonstrate.

Consider a certain amount of gas whose pressure and volume change from
pi, Vi to pf, Vf upon passing through the constriction (Figure 12.4, on the right).
No heat is transferred to or from the gas during the process, but work is done. As
it passes through the constriction, it does work pfVf as it pushes the gas in front
of it on down the tube. Likewise, it receives work piVi from the gas behind it as it
gets pushed through the constriction. From the first law, we can write the change
in internal energy of this gas as

�E = �Q − �W ⇒ Ef − Ei = 0 − (pfVf − piVi).

Rearranging terms shows that the enthalpy H = E + pV is unchanged during this
process:

Ef + pfVf = Ei + piVi ⇒ Hf = Hi.

So we have two constraints (dH = dN = 0), leaving only one independent
variable. To take advantage of the constraint dH = 0, we reexpress the change
in enthalpy:

�H = 0 = T �S + V �p (throttling). (12.8)

This equation relates �S to �p. But we want to relate �T to �p. So we must write
�S in terms of �T and �p and then use Table 11.1 for the partial derivatives:

�S =
(

∂S

∂T

)
p

�T +
(

∂S

∂p

)
T

�p = Cp

T
�T − Vβ�p.

Putting this expression for �S back into equation 12.8 and solving for �T gives

�T = (Tβ − 1)V

Cp
�p (throttling). (12.9)

This is what we were looking for. It allows us to calculate the drop in tem-
perature by integrating over the change in pressure from one side of the con-
striction to the other. To integrate, we would have to know how β, V , Cp depend
on T, p. Either an equation of state or careful measurements could give us that
information.

Throttling would not cool an ideal gas at all because, for an ideal gas, Tβ −
1 = 0 (can you explain why?). Furthermore, the enthalpy of an ideal gas is
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Figure 12.5 (Left) In free
expansion, a partition is
removed and the gas
rushes into the empty part
of the container. Because
nothing is moved by the
expanding gas no work is
done and, if the container
is insulated, its internal
energy remains
unchanged. (Right) To
use equilibrium
thermodynamics (e.g.,
equation 12.11) in this
process, we would have
to let the gas freely
expand in infinitesimal
increments, and integrate.

proportional to its temperature:

H = E + pV = Nν

2
kT + NkT =

(
ν

2
+ 1

)
NkT (ideal gas).

So for an ideal gas, constant enthalpy means constant temperature.
In most real gases, however, there are weak long-range forces of attraction

between molecules, and they move against these forces as they spread out. So
under expansion, they slow down and their temperature falls. (Rising potential
energy means decreasing kinetic energy.) Since these interactions are stronger
at closer distances, we expect throttling to be more effective if it takes place at
higher pressures and higher gas densities. Indeed, this is usually true, as can be
seen in the homework problems.

Hydrogen and helium are different, however, because their long-range mutual
attraction is so weak. Under pressure, collisional repulsion dominates at normal
temperatures, making the potential energy reference level u0 positive. So when
expanded, the potential energy decreases, causing an increase in thermal energy
and temperature. Highly compressed hydrogen could self-ignite while expanding
in air! So, to cool these gases via throttling we must start at colder temperatures,
where the repulsive forces due to intermolecular collisions are not so prominent.

E.2 Free expansion

In a “free expansion,” a gas expands without doing any work at all. Consider a gas
in one section of a rigid insulated container, as in Figure 12.5. The other section is
completely empty. As the partition is removed and the gas rushes into the empty
section, the molecules collide with stationary rigid walls. Because the walls don’t
move, the gas does no work on them. The combination of no heat transfer and no
work means no change in internal energy. So free expansion operates under the
two constraints dN = dE = 0, and we can express the changes in any property
in terms of just one independent variable.

To take advantage of the constraint dE = 0, we start with the first law,

�E = 0 = T �S − p�V (free expansion). (12.10)
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irreversible

reversible

Figure 12.6 Two gases of
the same temperature
and pressure are
separated by a barrier. Is
the removal of the barrier
a reversible process if
(above) the two gases are
different, (below) the two
gases are identical?

If we wish to relate changes in temperature, �T , to changes in volume, �V , we
must write �S in terms of these two variables, using Table 11.1 to convert the
partial derivatives:6

�S =
(

∂S

∂T

)
V

�T +
(

∂S

∂V

)
T

�V = CV

T
�T + β

κ
�V .

Inserting this into equation 12.10 and solving for �T gives

�T =
(

pκ − Tβ

κCV

)
�V (free expansion). (12.11)

Free expansion, like throttling, would not cool an ideal gas at all, because for
an ideal gas, pκ − Tβ = 0 (homework). Another way of seeing this is to refer to
our model equation for the internal energy of an ideal gas:

E = Nν

2
kT .

Since the internal energy remains unchanged, so must the temperature. By con-
trast, most real gases do cool under free expansion. As we have seen, the long-
range intermolecular attraction makes them slow down as they spread out.

E.3 Mixing

Free expansion is one example of an irreversible process initiated by the removal
of barrier constraints. Another example is that illustrated in Figure 12.6, where
two gases of equal temperature and pressure are separated by a barrier. If the two

6 Can you explain why entropy increases even though no heat is transferred? (Think about the number

of states in coordinate space.)
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Table 12.1. Typical thermal Conductivities of some materials

Material k (W/m K) Material k (W/(m K))

silver 410 masonry 0.62
copper 380 water 0.56
aluminum 210 sheet rock and plaster 0.50
steel 45 wood 0.10
rock 2.2 insulation 0.042
glass 0.95 air 0.023

gases have different compositions, the removal of the barrier allows them to mix,
which is an irreversible process. The thoroughly mixed state has higher entropy --
there is more volume in coordinate space for each molecule. No matter how
long you wait, you will never see the two gases separate again. The entropy has
increased and cannot go back.

An important variation of the above experiment is to do it for two gases
that have the same initial composition. When the partition is removed, nothing
changes. The original state can be recovered simply by reinserting the partition.
In this case, the removal of the barrier causes no change in entropy. The process
is reversible.

The above two processes are the same except for the identities of the particles.
In the first case the entropy increases, and in the second case it does not. This
illustrates that the way in which we measure entropy, or equivalently the way in
which we count accessible states, depends on whether the particles are identical.
We have seen this before and will see it again.

E.4 Thermal conduction

The second law demands that heat flows from hot to cold, but it does not dictate
the rate of flow. Experimentally, we find that the heat flux or “thermal current
density”, measured in watts/m2, depends on the temperature gradient:

JQ = −k
∂T

∂x
, (12.12)

where the constant of proportionality k is the “thermal conductivity” of the mate-
rial (Table 12.1), and the minus sign indicates that the flow is backwards to the
gradient. This is analogous to the electrical current density, which is backwards
to the voltage gradient:

Jelectrical = −σ
∂V

∂x
,

the constant σ being the “electrical conductivity” of the material.
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The total rate of heat flow, Q̇, is the product of the flow rate per unit area times
the area A. For a temperature drop �T over a distance �x , we have

Q̇ = JQ A = −k
�T

�x
A.

The collection of factors kA/�x is the reciprocal of the “thermal resistance,” R,
so the above equation can be written as

Q̇ = − 1

R
�T where R = �x

k A
. (12.13)

Again, this is the same as the corresponding relation for electrical resistance,

Ielectrical = − 1

R
�V where R = �x

σ A
:

thus, the resistance increases with thickness and decreases with cross sectional
area.

By analogy with the flow of electricity, you can see that the laws of thermal
resistors in series and parallel must be the same as for electrical resistors:7

Rseries = R1 + R2 + · · · , 1

Rparallel
= 1

R1
+ 1

R2
+ · · · . (12.14)

For example, for a wall with windows (resistance Rw), wall space with interior
insulation (resistance Ri), and walls space with interior studs (resistance Rs), the
total thermal resistance would be given by

1

Rtotal
= 1

Rw
+ 1

Ri
+ 1

Rs
,

because these thermal resistors are side by side, in parallel. Each consists of
several materials in series, however, so you would have to use the series formula
for each. For example, if the window consists of two sheets of glass (resistance Rg)
with an air space (resistance Ra) between, then the window’s thermal resistance
is

Rw = Rg + Ra + Rg.

The insulated wall might have some plaster (resistance Rp) followed by sheet
rock (resistance Rs) followed by insulation (resistance Ri) followed by exterior
siding (resistance Re), giving a total thermal resistance

Rw = Rp + Rs + Ri + Re.

Each individual resistance depends on area, thickness, and thermal conductivity,
according to equation 12.13 above.

The thermal resistances per square foot or square meter are called R-values
and they are now given for all building materials, so you don’t have to calculate

7 The first is derived from the fact that the total temperature change is the sum of the changes across

the individual layers, and the second is derived from the fact that the total flow is the sum of the

flows through neighboring parts.
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Q1

= Q1 − Q2

Q2

x1

∆x

∂E

∂t

x2

A
. .

. . Figure 12.7 The rate of
change of the energy
stored in the region
indicated is the difference
between the rate Q̇1 at
which heat flows in and
the rate Q̇2 at which it
flows out.

them from scratch (i.e., from equation 12.13). But still you will have to put
them together using the parallel and series formulas to calculate the total thermal
resistance of walls and ceilings. Most building codes now place restrictions on
thermal resistances, and as our energy resources become more depleted these
restrictions will become tighter. You will also become increasingly interested as
your energy bills rise.

E.5 The heat equation

In the previous subsection, we were interested in heat flow through a material
across which there is a uniform temperature gradient. But what if the temperature
gradient is not uniform? No problem -- we have the machinery to calculate flow
rates in this case too.

We begin by noting that the rate of increase in internal energy E within the
region (x1, x2) in Figure 12.7 is the difference between the rates at which heat
flows in and out:

Q̇1 − Q̇2 = ∂ E

∂t
. (12.15)

If the region’s cross sectional area is A and thickness is �x = x2 − x1, we can
convert the left-hand side of this equation to the following form (using Q̇ =
JQ A):

Q̇1 − Q̇2 = −∂ Q̇

∂x
�x = −∂ JQ

∂x
A�x .

Substituting this expression into the left of equation 12.15, we divide both sides
by the volume of the region (V = A�x) and get

−∂ JQ

∂x
= ∂ρE

∂t
, where ρE = E

V
= energy density. (12.16)
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This is the one-dimensional form of the “continuity equation,” which in three
dimensions is

−∇ · J = ∂ρ

∂t
. (12.17)

It applies to anything that is conserved -- mass, energy, electrical charge, etc.,
so you will encounter it again and again in your various fields of study. In the
homework problems, this equation is integrated over an arbitrary volume to show
that it simply means

rate in − rate out = rate of change inside. (12.18)

We can rewrite equation 12.16 by using expression 12.12 for the thermal
current density, JQ = −k(∂T/∂x), and dividing both sides by k:

∂2T

∂x2
= 1

k

∂ρE

∂t
. (12.19)

This tells us that energy flows out of regions (ρE decreases) where the temperature
has a relative maximum (i.e., a negative second derivative) and into regions (ρE

increases) where there is a relative minimum (i.e., a positive second derivative).
Now working on the right-hand side of the equation, the change in internal

energy, dE , is related to the temperature change dT by (equations 8.13 and 8.14):

dE = mcdT .

Dividing by the volume, we obtain

dρE = ρmcdT,

where ρm is the mass density and c the specific heat. With this replacement,
equation 12.19 becomes

∂2T

∂x2
= 1

K

∂T

∂t
, where K = k

ρmc
. (12.20)

This is called the “heat equation.” As mentioned above, you will encounter it
many different fields of science, because it applies to the flow of anything that
is driven by gradients and is conserved. The symbols will change depending on
whether you are dealing with energy, electrical charge, mass, probabilities, etc.,
but it will always be of the form

∂2 Z

∂x2
= A

∂ Z

∂t
. (12.21)

In three dimensions this becomes

∇2 Z = C
∂ Z

∂t
,

where C is any constant.
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In the homework problems you can show that a particular solution to the heat
equation 12.20 is

T (x, t) = 1√
4π K t

e−(x−a)2/4K t . (12.22a)

You should recognize this as a Gaussian, beneath which the integrated area on
x = (−∞, ∞) is 1 and which has standard deviation (subsection 3B.2)

σ =
√

2K t . (12.22b)

Notice that this Gaussian starts out (at t = 0) as an infinitely narrow spike (σ = 0),
which spreads out as time progresses. This spike is actually a delta function,
δ(x − a), since the total area beneath T (x, t) at any time (including t = 0) is
1. In the homework problems, you can use this fact to show that if the initial
temperature distribution is given by T (x, t = 0) = f (x) then the temperature
distribution at any later time is given by

T (x, t) =
∫ ∞

−∞
f (x ′)

(
1√

4π K t
e−(x−x ′)2/4K t

)
dx ′, (12.23)

where

f (x) = T (x, t = 0).

Summary of Sections D and E

A process is reversible only if the total entropy of the interacting systems remains

constant. Such a process may or may not involve the transfer of heat energy between

systems. Thermal, mechanical, and diffusive interactions may be reversible only if

the interacting systems have the same temperature, pressure, or chemical potential,

respectively. Friction transforms the coherent motion of molecules in one direction

into random thermal motions in all directions, for which there are more accessible

states and therefore higher entropy.

During the throttling process in a gas, the number of particles and the enthalpy

remain constant. The change in temperature of the gas is related to the change in

pressure through (equation 12.9)

�T = (Tβ − 1) V

Cp
�p (throttling),

where β is the coefficient of thermal expansion. Such temperature changes are the

result of intermolecular forces, so there would be none in an ideal gas.

The free expansion of a gas results in no change in internal energy, because

there is no work and no heat transfer. Hence, any change in potential energy is

compensated by a corresponding change in kinetic energy, and hence temperature.

Such changes depend on the intermolecular forces. Changes in temperature and

volume are related through (equation 12.11)

�T =
(

pκ − Tβ

κCV

)
�V (free expansion).
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Mixing systems of equal temperature and pressure may or may not be reversible,

depending on whether the particles of the two systems are identical.

Correspondingly, the counting of states for systems of identical particles is different

from that for non-identical particles.

For heat conduction the thermal current density depends on the temperature

gradient (equation 12.12):

JQ = −k
∂T

∂x
.

The rate of heat flow through a material is (equation 12.13)

Q̇ = − 1

R
�T, where R = �x

k A
,

R is the “thermal resistance”, A the cross sectional area, and �x its thickness.

For materials in series or parallel the total thermal resistance is given by

(equation 12.14)

Rseries = R1 + R2 + · · · ,
1

Rparallel
= 1

R1
+ 1

R2
+ · · ·

If the temperature gradient is not uniform, we can use the following expression

for the rate of heat flow per unit area (equation 12.16):

−∂ JQ

∂x
= ∂ρE

∂t
,

where ρE is the energy density. This is the one-dimensional form of the continuity

equation and applies to the flow of all conserved quantities. It means

(equation 12.18)

rate in − rate out = rate of change inside.

When written in terms of the temperature, equation 12.16 becomes the heat

equation (12.20),

∂2T

∂x2
= 1

K

∂T

∂t
, where K = k

ρmc
.

If the initial temperature distribution is given by T (x, t = 0) = f (x) then the

temperature distribution at any later time is given by (equation 12.23)

T (x, t) =
∫ ∞

−∞
f (x ′)

(
1√

4π K t
e−(x−x ′)2/4K t

)
dx ′.

Problems

Section A
Problems 1--5 deal with isobaric nondiffusive interactions. In each case, find the
required expression by first using the appropriate partial derivatives and then
using Table 11.1 to express them as easily measured properties of the system.
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1. Find the expressions that relate changes in entropy to changes in (a) volume,
(b) temperature.

2. Starting with the first law, find the expressions that relates changes in internal
energy to changes in (a) volume, (b) temperature.

3. Find the expression that relates changes in volume to changes in temperature.

4. Find the expressions that relate changes in each of the following to changes
in temperature: (a) enthalpy, (b) Helmholtz free energy, (c) Gibbs free
energy.

5. Repeat the above problem for changes in volume.

6. The overwhelming mass of life in the oceans is microscopic and single-
celled. For the first 90% of the history of Earth, all life was in the oceans.
Under what constraints do the corresponding biophysical processes operate?
(Assume that an organism stays relatively stationary in space during any one
process.) Such processes are of great scientific importance.

7. Consider some isobaric process. This constraint dp = 0 means that there are
two independent variables. Starting from the first law,
(a) write down an expression for dE in terms of dV and dN . (Hint: First

write dS in terms of dV and dN .)
(b) write down an expression for dE in terms of dµ and dN .

Section B
Problems 8--12 deal with isothermal nondiffusive interactions. Again, in each
case find the required expression by first using the appropriate partial derivatives
and then using Table 11.1 to convert them into easily measured properties of the
system.

8. Find the expressions that relate changes in entropy to changes in (a) volume,
(b) pressure.

9. Starting with the first law, find the expressions that relate changes in internal
energy to changes in (a) volume, (b) pressure.

10. Find the expression that relates changes in volume to changes in pressure.

11. Find the expressions that relate changes in each of the following to changes
in pressure: (a) enthalpy, (b) Helmholtz free energy, (c) Gibbs free energy.

12. Repeat the above problem for changes in volume.

13. In Example 12.2 we showed that dE = (Tβ/κ − p)dV for an isothermal
nondiffusive process. Show that dE is independent of dV for an ideal gas,
by showing the coefficient of dV to be zero.
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14. What is the coefficient of dV in the above problem for a van der Waals gas?
Express your answer in terms of T, v, and the van der Waals coefficients a
and b.

15. Consider a mole of steam under very high pressure, so that the van der
Waals model is the correct equation of state. The constants for steam are
a = 5.5 liter2 atm/mole2, b = 0.030 liter/mole. Suppose that the steam is
initially at a pressure of 100 atm with a volume of 0.3 liter and then is
expanded to twice this volume. Find (a) the initial temperature of the steam,
(b) the final temperature if the expansion is isobaric, (c) the final pressure if
the expansion is isothermal.

16. Consider the isothermal expansion of an ideal gas of n moles at temperature
T . If it expands from volume Vi to Vf, what is (a) the work done by the
gas in terms of n, T, Vi, and Vf, (b) the heat added to the gas in terms of
n, T, Vi, and Vf)?

17. For a fluid in hydrostatic equilibrium, the pressure varies with altitude accord-
ing to dp = −(M/V )gdz, where M/V is the mass density.
(a) Show that if the atmosphere were an ideal gas at constant temperature,

the pressure would fall off exponentially with altitude according to p =
p0e−αz , with α = mg/kT and m the average mass of an air molecule
(4.84 × 10−26 kg for dry air).

(b) If the atmosphere were at 0 ◦C, what change in altitude would be required
for the pressure to decrease by 1/2?

Section C
18. Starting with the first law and the differential forms of E = (Nν/2)kT

and pV = NkT , prove that, for adiabatic processes in an ideal gas (where
γ =(ν + 2)/ν),
(a) pV γ = constant,
(b) T V γ−1 = constant,
(c) T p1/γ−1 = constant,
(d) γ = C p/CV (refer to equations 10.14 and 10.15).

19. A certain gas is compressed adiabatically. The initial and final values of
the pressure and volume are pi = 1 atm, Vi = 2 liters, pf = 1.1 atm, Vf =
1.85 liters. What is the number of degrees of freedom per molecule for this
gas?

20. Consider a gas, initially at pressure pi and volume Vi, that is expanded adia-
batically to final volume Vf. Find an expression for the work done by the gas
in terms of pi, Vi, Vf, and γ .

21. For an ideal gas undergoing a nondiffusive process, show that
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(a) the heat capacities are CV = (ν/2)Nk and Cp = [(ν + 2)/2]Nk,
(b) the change in enthalpy is �H = C p�T .

22. Consider 0.446 mole of an ideal gas, initially at temperature 0 ◦C, pressure
1 atm, volume 10.0 liters, that has five degrees of freedom per molecule.
Suppose that this gas is expanded to a volume of 15 liters. What would be the
new values of its temperature and pressure if this expansion were (a) isobaric,
(b) isothermal, (c) adiabatic?

23. For each of the three processes in problem 22, calculate (a) the work done by
the gas, (b) the heat added to the gas, (c) the change in internal energy, (d)
the change in enthalpy.

24. For most solids and liquids, Cp and CV are nearly the same, Cp≈ CV = C. Fur-
thermore C, β, κ, and the volume V remain reasonably constant over fairly
wide ranges in T and p. Assuming that they are thus constant, integrate
the results 12.3, dT/T = (Vβ/C p)dp, dT/T = −(β/CV κ)dV, dV/V =
−(κCV /Cp)dp, to find the relationships between the initial and final values
of T, p, and V for adiabatic processes in solids and liquids.

25. Starting with the first law for quasistatic adiabatic (i.e., isentropic) non-
diffusive processes and expressing all partial derivatives in terms of easily
measured parameters, using Table 11.1, show how dE varies with (a) dp,
(b) dV , (c) dT .

26. Pressure decreases with height y in the atmosphere at a rate given by p =
p0e−αy , where α = 0.116 km−1. For air, γ = C p/CV = 1.4.
(a) If the temperature of the air on the ground is 293 K, find what the

temperature at an altitude of 1 km would be if temperature changes at an
adiabatic rate.

(b) If the actual temperature at that altitude is 285 K, would there be upward
convection or would there be an inversion layer?

27. Near the bottom of a certain ocean basin (about 5 km down) the temperature of
the water is 3 ◦C. Even in the high pressures at that depth, the following param-
eters are roughly the same as at the ocean’s surface: the coefficient of vol-
ume expansion β = 2.1 × 10−4/K, the isothermal compressibility κ = 4.6 ×
10−10 m2/N, the molar heat capacity CV = 75 J/K , the molar volume v =
1.8 × 10−5 m3, the density ρ = 1.03 × 103 kg/m3.

(a) What is the change in pressure with each additional one meter depth?
(b) Measurements taken show that down there the temperature increases

with depth at a rate of 0.7 × 10−4 K/m. Is the water stable against vertical
convection?

28. Calculate the parameters β and κ in terms of p, V and T for a gas obeying
the ideal gas law.
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29. Sometimes we have “conditional stability” in our atmosphere, which means
that the lower atmosphere is stable against vertical convection (i.e., thermal
inversion) if the air is dry but not if it is moist. How can this be?

30. With the help of Table 11.1, derive equations 12.3 for isentropic nondiffusive
interactions.

31. One liter of air (ν = 5, so γ = 1.4) at 1 atm pressure and 290 K is compressed
adiabatically until the final pressure is 8 atm. What are the final volume and
temperature, and how much work has been done on the air?

32. Because mechanical disturbances propagate through materials much faster
than the speed of thermal conduction, the compressions and rarefactions
associated with the propagation of sound are adiabatic. The wave equation
for sound is

∂2 y/∂x2 = (1/v2)∂2 y/∂t2,

where y is the displacement, v2 = B/ρ (ρ is the mass density and v the wave
speed), and B is the adiabatic bulk modulus, B = −V (∂p/∂V )S .
(a) For an ideal gas, what is B in terms of p and γ ?
(b) For dry air at standard pressure (1 atm) and 290 K, γ = 1.4 and ρ =

1.22 kg/m3. What is the speed of sound?
(c) Using this result, write down the correct expression for the speed of

sound in dry air at any temperature T.

Section D
33. Consider a large rotating flywheel connected to a piston, as in Figure 13.2.

As the flywheel rotates, the gas in the cylinder is alternately compressed and
expanded quasistatically by the moving piston. If the container and piston are
thermally insulated and there is no friction, is the process reversible? (Hint:
Is the entire system back to its starting point after one complete rotation of
the flywheel?)

34. Consider an insulated container holding fresh water and sea water, which
are separated by a partition. If they are initially at the same temperature and
pressure and the partition is removed, is the process reversible? That is, can
the original system be regained by reinserting the partition?

35. Think about friction. A book sliding across a level table comes to a stop.
Because systems always go towards configurations of higher entropy, the final
stopped state must have higher entropy than the preceding moving state. Can
you explain the reason for this in terms of molecular motion? Explain why
it would be extremely improbable for the book to subsequently slide back to
where it started from.

36. When a book slides across a table and comes to a stop, both systems (i.e., the
book and the table top) get slightly warmer as a result of the friction, so the
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internal energy of both systems increases. How can this happen if energy is
conserved?

Section E
37. A certain gas undergoing a throttling process is initially at a pressure of

100 atm and a temperature of 0 ◦C, and the molar volume is 0.25 liters. If
the molar heat capacity of this gas is C p = 29 J/(K mole) and the coefficient
of volume expansion is β = 5 × 10−3/K, what change in the temperature of
the gas do you expect if the pressure is reduced by 1 atm (1 atm = 1.013 ×
105 Pa)?

38. One mole of an ideal gas with ν = 5 (γ = 1.4) is initially at a temperature,
pressure, and volume of 0 ◦C, 100 atm and 0.224 liters, respectively. It is
allowed to expand until its pressure is reduced to 10 atm. What is its final
temperature if this expansion is (a) adiabatic, (b) carried out through a throt-
tling process?

39. The van der Waals constants for oxygen gas, O2, are a = 1.36 liters2

atm/mole2, b = 0.0318 liters/mole. Some oxygen gas is under a pressure
of 100 atm and has a molar volume of 0.25 liters, and there are five degrees
of freedom per molecule.
(a) What is its temperature?
(b) What is its coefficient of thermal expansion, β?
(c) If this gas were undergoing a throttling process, what would be the

rate of temperature decrease with pressure, dT/dp, in units of ◦C per
atmosphere?

40. The molar heat capacity at constant pressure for a gas whose molecules
have ν degrees of freedom apiece is C p = [(ν + 2)/2]R. Using the van
der Waals model and expressing your answers in terms of ν, p, v, and the
van der Waals coefficients a, b, calculate the coefficient in the following
formulas:
(a) dT = (· · ·)dp for the throttling process.
(b) dT = (· · ·)dv for free expansion.

41. In part (b) of the previous problem, we obtained dT = (−2a/v2νR)dv for
the free expansion of a van der Waals gas. Integrate to find the relationship
between Ti, Tf, vi, and vf for this process.

42. A mole of steam (ν = 6) under an initial pressure of 300 atm is allowed
to expand freely from volume 0.15 liters to a volume twice that size.
The van der Waals constants for steam are a = 5.5 liters2/(atm mole)

2
, b =

0.030 liter/mole.
(a) What is the initial temperature of the steam?
(b) Using the results of part (a) and problem 41, find the final temperature

of the steam.
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43. An ideal gas expands from initial volume Vi to final volume Vf. The initial
temperature is Ti. Calculate the changes �E, �Q, and �W for the gas, in
terms of N , ν, T i, Vi, and Vf, for (a) free expansion, (b) adiabatic expansion
(hint: pV γ = constant; the value of the constant in terms of Ti and Vi can be
obtained from piVi = NkTi), (c) isothermal expansion.

44. Is the Joule--Thomson throttling process adiabatic? Is it isentropic? Explain
each answer.

45. (a) Suppose that you have two sets of four distinguishable coins, and you
flip all four coins in each system. How many different possible states are
there?

(b) Now suppose that the two sets each contain four identical coins, and you
flip all four coins in each set, keeping the two sets separate from each
other. How many different possible states are there?

(c) Now you combine the two sets into one set of eight identical coins, all
of which you flip. How many different possible states are there now?

46. You have a container divided into two equal volumes, V . On each side, you
have a gas of N particles. The corrected number of states per particle, ωc, is
the same for the particles on both sides:

ωc = c(V/N )(E therm/Nν)ν/2

where c is a constant. You remove the partition between the two volumes.
In terms of N and ωc, find the number of states available to the combined
system
(a) before you remove the partition,
(b) after you remove the partition if the two gases are different,
(c) after you remove the partition if the two gases are the same.
(d) How is this last result explained? If the volume available to each particle

doubles, shouldn’t ωc double too?

47. Prove the formulas 12.14 for thermal resistors in series and parallel. (In series
the total temperature drop �T is the sum of the individual drops, but Q̇ is
the same for all. In parallel, the two conditions are reversed.)

48. As you go down through the Earth’s crust, the temperature increases at a rate
of about 30 ◦C per kilometer of depth (the rate is more beneath oceans and
less beneath continents).
(a) Using this temperature gradient and the thermal conductivity of rock

from Table 12.1, calculate the rate at which heat reaches each square
meter of the Earth’s surface from its interior.

(b) Averaged over the entire Earth, day and night and all seasons, solar
energy reaches the Earth’s surface at a rate of 175 W/m2. How does this
compare with the energy arriving from the Earth’s interior?
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49. You can estimate the amount of energy leaking through one 3 m × 20 m
exterior wall during a winter, as follows. Assume 15 m2 of window space,
37 m2 of insulated wall, and 8 m2 of wall studs and other solid wood. Use the
thermal conductivities given in Table 12.1 to find the thermal resistances of
each of these parts.
(a) Windows What is the thermal resistance Rw (the R-value) of the

windows? Assume double-pane glass, each pane being 3 mm thick and
with an air space 1 cm thick. Also, to be realistic, assume two relatively
immobile air spaces 1 mm thick on the extreme interior and exterior
surfaces of these double-glazed windows (that is, there are five layers:
1 mm air, 3 mm glass, 1 cm air, 3 mm glass, and another 1 mm air).

(b) Insulated walls What is the thermal resistance Ri of the insulated walls?
Assume 2 cm of sheet rock, followed by 13 cm of insulation, followed
by 3 cm of wood. Again assume two immobile air spaces 1 mm thick
on the extreme interior and exterior surfaces, giving a total of five layers
altogether.

(c) Wall studs What is the thermal resistance Rs of the wall-stud area?
Assume 16 cm of solid wood and 2 cm of sheet rock, but again with
two immobile air spaces 1 mm thick on the extreme interior and exterior
surfaces, a total of four layers altogether.

(d) Now calculate the thermal resistance of the entire wall.
(e) If the inside--outside temperature differential averages 20 ◦C during the

winter, how much energy flows out through this wall during the three
winter months?

(f) Electrical heating costs about 15 cents per kilowatt hour, and gas heating
costs about one third of that. How much would this lost energy cost you,
for each kind of heating?

50. Show that equation 12.22a is a solution to the heat equation 12.20.

51. Show that equation 12.23 is a solution to the heat equation 12.20 satisfying
the initial condition T (x, t = 0) = f (x).
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A The general idea

Engines convert heat into work. Thermodynamics owes both its name, “heat-
motion”, and much of its early development to the study of engines. The working
system for most engines interacts both thermally and mechanically with other
systems, so its properties depend on two independent variables. Most engines are
cyclical, so that the working system goes through the following stages:

252
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hot reservoir

cold reservoir

engine

W

Qh

Qc

Figure 13.1 Energy flow
for an engine. It takes
heat Qh from a hot
reservoir, does work W
with it, and exhausts the
remaining heat Qc into a
cold reservoir.

� it is heated;
� it expands and does work, pushing a piston or turbine blades;
� it is cooled further;
� it is compressed back into its original state, ready to begin the cycle again.

The expansion occurs when the working system is hot and is under high
pressure or has a larger volume, and the compression occurs when it is cooler
and is under lower pressure or has a smaller volume. Therefore, the work done
by the engine while expanding is greater than the work done on the engine while
being compressed. So there is a net output of work by the engine during each
cycle. This is what makes engines useful. If you can understand this paragraph,
you understand nearly all engines.

The details vary from one engine to the next. The working system could be any
of a large variety of gases or volatile liquids. The source of heating could be such
things as a flame, a chemical explosion, heating coils, steam pipes, sunlight, or a
nuclear reactor. The cooling could be provided by such things as air, water, ice,
evaporation, or radiative coils. Whatever the source of heat we call this source
the “hot reservoir,” and whatever the source of cooling we call this source the
“cold reservoir.” These generic terms allow us to analyze all engines together,
irrespective of the particular sources of heating and cooling and of the particular
nature of the working system.

Figure 13.1 illustrates the basic process for all engines. The engine takes heat
Qh from the hot reservoir at high temperatures, does work W with it, and then
“exhausts” the remaining heat Qc into the cold reservoir at a lower tempera-
ture. Conservation of energy demands that the energy input equals the energy
output:

Qh = W + Qc. (13.1)
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Since the purpose of an engine is to turn heat into work, we define the engine’s
efficiency e to be a measure of how effective it is at doing this:

efficiency e = W

Qh
. (13.2)

Since we pay for the heat input Qh and benefit from the work output W, we want
to make this ratio as large as possible. A perfect engine would turn all the heat
input into work, giving it an efficiency of 1. Unfortunately, such perfection is
impossible, as we will see.

Combining equations 13.1 and 13.2 provides an equivalent way of defining
efficiency:

e = Qh − Qc

Qh
(13.3)

You can see that maximizing the efficiency means minimizing the heat exhausted
Qc. Heat exhausted is heat that has not been turned into work and is therefore
wasted.

The operation of real engines involves turbulence, temperature gradients, fric-
tion, and other losses, as well as varying constraints. Unfortunately, the ther-
modynamical tools that we have developed are most easily applied to systems
in equilibrium and subject to well-defined constraints. Therefore our study of
engines often involves approximating the cycles of real engines with “model
cycles,” which are sequences of different stages, each stage having an appro-
priate constraint such as being purely isobaric, isothermal, adiabatic, or iso-
choric. We also need to assume that each process is quasistatic, so that the
engine is in equilibrium at all times, and that we can ignore frictional losses. This
allows us to calculate the work done or the heat added during any stage of the
cycle by

�W =
∫

pdV, �Q =
∫

T dS.

To describe the working system, we may choose whichever two independent
variables we wish. We often find it convenient to work with the pressure and
volume (p, V ), and we represent the changes in these two variables on a p–V
diagram. This representation has the advantage that since the work done equals
∫pdV it can be read directly off the diagram as the area under the curve.

Sometimes we choose the two independent variables to be the temperature
and entropy (T, S), and we can represent the changes in these variables on a
T –S diagram. This representation has the advantage that the heat input is the
integral ∫T dS and therefore can be read directly from the T –S diagram as the
area under the curve. Since heat and work are of central importance in the analysis
of engines, we use the (p, V ) and (T, S) representations extensively.



Engines 255

hot reservoir
Qh Qc

cold

(1) Heat addition (3) Heat exhaust

cold reservoir

(2) Adiabatic expansion 
(hot, high pressure)

(4) Adiabatic compression
(cool, low pressure)

hot

Figure 13.2 Elements of
a simple piston engine.
(1) Heat Qh is added to
the compressed gas,
causing its temperature
and pressure to rise.
(2) The hot high-pressure
gas drives the piston,
making the flywheel
rotate. (3) Heat Qc is
exhausted, causing the
temperature and pressure
to fall. (4) The flywheel
compresses the cooled
low-pressure gas with
ease. This brings it back
to the starting point.

B Examples

B.1 Gas piston engines

Consider a gas piston engine that stores energy in a heavy flywheel, as in
Figure 13.2. The engine goes through the following four-stage cycle, illustrated
in Figures 13.2 and 13.3.

1 Heat addition (ignition stage) When the gas is fully compressed we add heat, causing

the pressure to increase.

2 Adiabatic expansion (power stage) The heat source is removed. The hot high-pressure

gas expands and pushes the piston, making the flywheel turn.

3 Heat exhaust (exhaust stage) When the gas is fully expanded we extract heat from it,

causing the pressure to fall further.

Figure 13.3 p--V and T--S diagrams for the four stages of the simple piston engine
given above. The solid lines indicate the actual cycle and the broken lines indicate
our model cycle, which has pure and abruptly changing constraints for each of the
four stages.
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dW = pdV is positive

Wnet = area within
         the curve

dW = pdV is negative

p T

V S

Qnet = area within
         the curve

dQ = TdS is negative

dQ = TdS is positive

Figure 13.4 (Left) The
work done is the integral
∫ pdV , which is the area
under the curve in a p--V
plot; dV is positive during
expansion and negative
during compression. The
area under the expansion
curve minus that under
the compression curve is
simply the area between
the two curves. (On the
right) Similarly, heat
transfer is the integral
∫ TdS, which is the area
under the curve in a T--S
plot; dS is positive as heat
is added and negative as
it is removed. So the net
heat added during any
cycle is equal to the area
between the two curves.

4 Adiabatic compression (compression stage) We stop the heat removal. The turning

flywheel compresses the gas back to its original pressure and volume.

Notice that during the expansion stage the gas is hotter, and so it exerts greater
pressure than in the compression stage. For this reason, it does more work on the
piston while expanding than the piston does on it when it is being compressed.
Therefore, the net work done by the engine for each cycle is positive. Heat has
been converted into work.

Changes in pressure and volume for the cycle are shown on the p–V diagram of
Figure 13.3 (on the left). The corresponding changes in temperature and entropy
are shown in the T –S diagram on the right and go as follows. As heat is added
to the gas (stage 1) the temperature and entropy both increase, and as heat is
removed (stage 3) they both decrease. The entropy is constant for the adiabatic
stages (i.e., the two stages that have no heat exchange), the temperature falling
during expansion (stage 2) and rising during compression (stage 4). Figure 13.3
also illustrates how we simplify calculations by using single-constraint stages to
model the actual cycle.

During expansion, the volume is increasing and the work is positive, but
during compression the volume is decreasing and the work is negative. So, to
find the net work for any cycle on a p–V diagram, we add the area under the
expansion curve and subtract that under the compression curve. That is, the net
work per cycle is simply the area between the expansion and compression curves
(Figure 13.4, on the left). Similarly, the net heat transfer �Q = ∫ T dS is the area
within the loop on the T –S diagram.

After any complete cycle, the system’s internal energy (like all other measur-
able parameters) returns to its original value, which means that the net change
per cycle is zero:

�E = 0 = �Q − �W ⇒ �Qnet = �W net. (13.4)

So the area of the cycle on the p–V diagram must be equal to its area on the T –S
diagram.
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Figure 13.5 Elements of
a gas turbine engine, and
the model cycle on a p--V
diagram and on a T--S
diagram. The cycle
includes (1) isobaric
heating from the hot
reservoir, (2) adiabatic
expansion through the
turbine, (3) isobaric
cooling in the cold
reservoir, (4) adiabatic
compression in the
compressor.

B.2 Gas turbines

A turbine is a series of fan blades that are forced to spin as hot pressurized gas
shoots through. The gas expands and cools as it passes through the spinning
blades, thereby turning heat into work. In an engine, some of the work output
of the turbine is used to power the compressor (a turbine running backwards),
which compresses the gas on the return cycle. The gases in the compressor are
relatively cool and easily compressed. So the compressor does less work on the
cooled gas than is done by the heated gas on the turbine. This means that there
is a net work output, which can be used to power a car, an airplane propeller, an
electrical generator, or a variety of other machines.

In a turbine engine the gas flows continuously and is heated and cooled under
conditions of constant pressure instead of constant volume. That is, in contrast
with piston engines, the turbine engine’s hot and cold reservoirs cause changes
in volume rather than pressure. (The changes in pressure occur in the turbine and
compressor, which are outside the hot and cold reservoirs.) The cycle is illustrated
in Figure 13.5 and goes as follows.

1 Isobaric heating (ignition stage) Initially warm and under high pressure, the gas is

heated further as it flows through the hot reservoir.

2 Adiabatic expansion (power stage) The hot pressurized gas then expands and cools as

it shoots through the turbine and into the region of lower pressure beyond. It turns the

turbine blades as it goes.

3 Isobaric cooling (exhaust stage) The warm gas is then cooled isobarically while pass-

ing through the cold reservoir.

4 Adiabatic compression (compression stage) The cold low-pressure gas is then forced

by the compressor back into the high-pressure region, becoming compressed and

warmed. It is now back to its initial state and is ready to repeat the cycle.
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hot reservoir

refrigerator

Qh

Qc

W

cold reservoir

Figure 13.6 A
refrigerator uses work W
from an external source
to extract heat Qc from a
cold reservoir (the inside
of the fridge) and deposit
heat Qh = W + Qc in a hot
reservoir (outside the
fridge).

In both the piston and the gas turbine engines, the gas is hotter during the
expansion than during the compression and therefore there is a net work out-
put. The basic difference between them is that in the piston engine the higher
temperature produces a greater pressure whereas in the gas turbine engine the
higher temperature produces a larger volume. Either way, the work done (∫pdV )
is larger when the gas is hotter.

C Refrigerators

Refrigerators are engines running backwards (compare Figure 13.6 with 13.1).
In an engine the gas expands when it is hot and is compressed when it is cold, so
there is a net output of work. By contrast, the gas in a refrigerator is compressed
when it is hot and expands when it is cold, so that there is a net input of work.
In this reversed cycle, the heat is transferred from the cold to the hot reservoir,
which is the opposite of what engines do.

A good refrigerator will extract as much heat as possible from the cold reservoir
(the inside of the fridge) with as little work as possible, thereby minimizing your
utility bill. Therefore the appropriate performance measure is the amount of heat
that can be extracted per unit of work expended. This is called the coefficient of
performance:

coefficient of performance = Qc

W
. (13.5)

The diagram of a typical kitchen refrigerator (Figure 13.7) is like that of a
turbine engine but a simple expansion chamber replaces the turbine (because you
simply want to cool the gas and don’t want it to push or turn anything). The cold
coils are inside the refrigerator, and the hot coils are outside. Each set of coils is
known as a “heat exchanger.” The basic cycle goes as follows.
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Figure 13.7 A
refrigerator’s cycle.
(1) Adiabatic
compression, (2) heat
exhaust, (3) adiabatic
expansion, (4) heat
absorption.

1 Adiabatic compression Work from the outside runs the compressor; compressing the

gas makes it hot. (Notice that work has been done on the system.)

2 Heat exhaust The hot pressurized gas is now hotter than the ambient outside temper-

ature. So, as this gas passes through the outside coils, it releases heat into the air of

the room (the hot reservoir) and cools down to room temperature. (Notice that heat has

been exhausted into the hot reservoir.)

3 Adiabatic expansion The pressurized gas at room temperature then flows through the

expansion chamber, expanding and cooling as it enters the low-pressure region beyond.

It may even cool sufficiently to condense into a liquid.

4 Heat absorption The cold low-pressure fluid is now colder than the inside of the

refrigerator, so as it flows through the cold coils it absorbs heat from the inside of the

refrigerator, becoming warmer and perhaps vaporizing if it is a liquid at this stage.

(Notice that heat has been absorbed from the cold reservoir.) Now the gas is back to its

original state and is ready to start the cycle again.

D Heat pumps

If the compressor on your refrigerator could be run in either direction, you would
have a “heat pump.” Run in one direction it would remove heat from the inside
of the refrigerator and deposit it on the outside. When put in reverse it would do
the opposite.

These devices are used to heat and cool buildings. One set of coils is outside
the building, and one is inside. In the winter, you run the compressor in the
direction that transfers heat from the outside to the inside. In the summer you run
it in the opposite direction. Either way it is acting as a refrigerator, because either



260 Introduction to thermodynamics and statistical mechanics

warm house warm house

heat pump

cold outside
cold outside

W W

Qh

Qh

Qc

Figure 13.8 Illustration
of why heat pumps are
more efficient than
conventional space
heaters and furnaces,
which simply release
energy W and deposit it
inside the house. Heat
pumps use this much
energy to extract
additional heat from the
outside air, increasing the
total heat deposited
inside the house.

way it is removing heat from the cooler reservoir and depositing it in the warmer
one.

Because a relatively small amount of work can transfer rather large amounts
of heat, heat pumps are more efficient than furnaces for heating buildings
(Figure 13.8). For example, suppose that 1 unit of energy can either be burned
in a furnace or used to power a heat pump. If the heat pump uses this 1 unit to
transfer 4 units of heat from the cold reservoir, then it would provide 1 + 4 = 5
times more heating than the furnace. Unfortunately, the initial equipment expense
is greater. So, compared with conventional heaters, heat pumps generally have
greater initial equipment costs but smaller long-term operating costs.

E Types of cycle

If the engine’s or refrigerator’s working fluid remains a gas throughout the cycle,
this is a “gas cycle.” However, if the gas becomes a liquid at any time, it is a
“vapor cycle.” The latent heat absorbed during vaporization and released during
condensation permits relatively large heat transfer with relatively small temper-
ature differentials. This gives vapor cycles an advantage in certain applications,
such as refrigeration and steam turbines.

In engines with “closed cycles” the same fluid goes through every cycle. In
“open cycles,” a new fluid is used each time. The old fluid is driven out, carrying
the exhaust heat with it. It may also carry combustion products if the engine uses
internal combustion. Common examples of open cycles include automobile and
jet airplane engines.

Whether the same old fluid is recirculated or new fluid is taken in as the old
fluid is released makes no difference to either the engine or the environment. Both
cycles release heat and combustion products. In closed cycles they are released
by the furnaces and heat exchangers and in open cycles they are released in the
exhaust gases. The net effect is the same.
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Summary of Sections A--E

An engine transforms heat into work. In each cycle it takes heat Qh from a hot

reservoir, does work W with it, and exhausts the remaining heat, Qc, into a cold

reservoir (equation 13.1):

Qh = W + Qc.

In general, the working system in an engine is a fluid that goes through the

following four-stage cycle: heating, expansion, cooling, compression. It expands

when hot, and is compressed when cold. Therefore, the work done by it during

expansion is larger than the work done on it when it is compressed. So the net work

done per cycle is positive.

The efficiency of an engine measures the fraction of the incoming heat that gets

transformed into work (equations 13.2, 13.3):

efficiency e = W

Qh
= Qh − Qc

Qh
.

Most engines interact both thermally and mechanically with other systems, so all

properties depend on two variables. We assume that the working system is in

equilibrium at all times, so the work done and heat added during any part of the

cycle are the integrals ∫pdV and ∫T dS, respectively. The net work done and net

heat added during an entire cycle are the areas within the cycle on a p–V and a T –S

diagram, respectively. During any cycle, the net work done by the engine is equal to

the net heat gained by it (equation 13.4):

�Qnet = �Wnet (one complete cycle).

In a gas piston engine, the hot expanding gas pushes a piston. Some of this

energy is stored (e.g., in a flywheel) so that it can be used to compress the gas later

in the cycle when the gas is cooler. In the gas turbine engine, the heated expanding

gases do work by turning a turbine, and the cooled gases have work done on them by

a compressor.

A refrigerator is an engine running backwards. With external work W coming in,

it removes Qc from the cold reservoir and deposits Qh = W + Qc in the hot

reservoir. The “coefficient of performance” is a measure of how efficiently the

refrigerator removes heat from the cold reservoir (equation 13.5):

coefficient of performance = Qc

W
.

A heat pump is a refrigerator that can run in either direction, so it can absorb and

release heat through either set of coils.

If the working system remains a gas throughout the cycle it is called a gas cycle.

If it condenses into a liquid for any part of the cycle, it is called a vapor cycle. In a

closed cycle, the same fluid gets recycled. In an open cycle, the old fluid is released

and new replacement fluid taken in during each cycle.
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Figure 13.9 Illustration
of the slopes of the lines
for isobaric, isothermal,
adiabatic, and isochoric
processes on a p --V
diagram (on the left), and
a T--S diagram (on the
right).

F Performance analysis

F.1 Model cycles and constraints

We now examine the behaviors of engine operating systems under the various
constraints that we use in our model cycles. Figure 13.9a illustrates these qualita-
tively on a p–V diagram. Obviously the isobaric (�p = 0) line must be horizontal
and the isochoric (�V = 0) line must be vertical. The lines representing isother-
mal and adiabatic processes are sloping, because for both processes the pressure
decreases as the systems are expanded. The adiabatic line slopes more steeply
because the system cools off during adiabatic expansion, so the particles exert
even lower pressure than those of a system expanded isothermally.

Figure 13.9b illustrates these processes on a T –S diagram. Of course
the isothermal line (�T = 0) must be horizontal and the adiabatic line
(�Q = T�S = 0) vertical. The isochoric and isobaric lines are sloping because
for both processes the temperature increases as you add heat. But the temperature
rises faster in the isochoric case. Can you explain why?

Each stage of a model cycle operates under one constraint. This constraint
reduces the number of independent variables from two to one, so we can express
any property in terms of just one variable. To do this we can use models, equations
of state, or the techniques of Chapter 11.

For the particular case of an ideal gas, Table 13.1 gives the change in internal
energy �E, the work done �W , the heat added �Q, and the change in entropy �S
for various types of process. In this particular table, most changes are expressed
in terms of the change in temperature. In the homework problems, you can derive
these equations and express some of them in terms of changes in pressure or
volume.

F.2 Enthalpy

In addition to theoretical analyses, in which we often break up an engine’s cycle
into a sequence of single-constraint stages, there is also a simple way of doing
performance analysis experimentally that requires only the measurement of tem-
peratures and pressures at various points within the engine.
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Table 13.1. �E, �W, �Q (�E = �Q − �W ), and �S for an ideal gas operating
under various constraints

Quantity Isobaric Isochoric Adiabatic∗ Isothermal

�E nCV �T nCV �T nCV �T 0

�W n R�T 0 −nCV �T n RT ln

(
Vf

Vi

)

�Q nCp�T nCV �T 0 n RT ln

(
Vf

Vi

)

�S nCp ln

(
Tf

Ti

)
nCV ln

(
Tf

Ti

)
0 n R ln

(
Vf

Vi

)
Helpful relationships (ν = number of degrees of freedom per molecule,
CV,p are the molar heat capacities)

pV = n RT, E = nCv T, CV = (ν/2)R, Cp = CV + R, γ = Cp/CV = (ν + 2)/ν

Other variables The following relationships may be used to exchange
variables in the above expressions:

isobaric isochoric adiabatic isothermal

T =
(

p

n R

)
V T =

(
V

n R

)
p pV γ = const. V = n RT

p

Tf

Ti
= Vf

Vi

Tf

Ti
= pf

pi
T V γ−1 = const.

V f

Vi
= pi

pf

∗ For adiabatic processes, �W =−�E = −nCV �T =∫pdV = [1/(γ −1)][pi Vi − p f V f ].

Consider the change in internal energy of a fluid flowing from region 1 to
region 2, as in Figure 13.10, on the left. In region 1 it has pressure and volume
p1, V1 and in region 2 its pressure and volume are p2, V2. As we have seen, it
receives work p1V1 from the fluid behind as it gets pushed out of region 1, and
it does work p2V2 on the fluid ahead as it pushes into region 2. The change in its
internal energy is equal to the net work done on it,

E2 − E1 = p1V1 − p2V2.

Now suppose that the fluid also interacts thermally and/or mechanically
with some external system. Then the change in its internal energy is given by
(Figure 13.10, on the right)

E2 − E1 = p1V1 − p2V2 + Qext − Wext.

If we now move the pV terms to the other side of the equation, we have

(E2 + p2V2) − (E1 + p1V1) = Qext − Wext.
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p1 V1 V2 p2

WextQext

p1V1 p2V2

Figure 13.10 Consider a
fluid flowing through a
tube. (On the left) As it
flows through the
resistive barrier, it does
work p2V2 in pushing the
fluid ahead of it and
receives work p1V1 from
the fluid behind. So the
net change in enthalpy is
zero. (On the right) If it
also interacts with an
external system, receiving
heat Qext and/or doing
work Wext, the net change
in enthalpy is equal to this
energy exchange.

As we saw in subsection 12E.1, the combination E + pV is the enthalpy of the
fluid. Therefore, we can determine the work done or heat transferred during any
process by the change in the fluid’s enthalpy:

H2 − H1 = Qext − Wext. (13.6)

Note that, as usual, Qext is the heat added to the fluid and Wext is the work done
by the fluid.

For most gases, the enthalpy can be determined simply by measuring the
temperature. With the help of the ideal gas law, we have for n moles of the
gas

H = E + pV = ν

2
n RT + n RT = ν + 2

2
n RT = nCpT (ideal gas). (13.7)

With this, equation 13.6 becomes

H2 − H1 = nC p(T2 − T1) = Qext − Wext (ideal gas). (13.8)

For liquids and denser gases the enthalpy depends on both temperature and
pressure, and this dependence varies from one material to the next. The molar
enthalpies of most common working fluids, such as water, various refrigerants,
ammonia, etc., are listed in tables as functions of their temperature and pressure.
Therefore, by measuring the temperature and pressure at various points in the
cycle, we can find the change in enthalpy, which tells us the work done or heat
added during each of the various stages.

If you did not have an appropriate table of enthalpies, you could make one
yourself. Start in the rarefied “ideal” gas phase at low pressure and high temper-
ature T, where you can use equation 13.7 (H = nC pT ). Then you can determine
the enthalpy for any other temperature and pressure, including the liquid phase,
simply by transferring the amount of heat and/or work (Qext, Wext) needed to get
to that point. Equation 13.8 would give you the enthalpy H2 at the new point
in terms of the enthalpy H1 at the first point. This can be done for water in the
homework problems.

The important point here is that to study any engine component experimentally,
you do not need to go inside the component. If you simply measure the fluid’s
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Figure 13.11 Illustration
of the four stages of a
Carnot cycle. (1)
Isothermal expansion at
temperature Th, (2)
adiabatic expansion until
the temperature falls to
Tc, (3) isothermal
compression at
temperature Tc, (4)
adiabatic compression
until the temperature
rises back to Th.

temperature and pressure before it enters and after it leaves that component, then
you will know what has happened inside.

G The Carnot engine

G.1 The cycle

We now study an imaginary engine first proposed by Sadi Carnot in 1824 and
illustrated in Figure 13.11. It is reversible and, as we will show, this means that
it has the highest possible efficiency for any engine operating between two given
temperatures. For this reason, it serves as a model for real engines to emulate.
The cycle goes as follows.

1 Isothermal expansion (ignition) at temperature Th The compressed gas expands slowly

while in thermal equilibrium with the hot reservoir. Expanding gases tend to cool off

so, to keep the temperature constant, heat Qh must flow into it from the reservoir.

2 Adiabatic expansion (power) The gas is then removed from the hot reservoir and

continues to expand and cool as it pushes the piston outward.

3 Isothermal compression (exhaust) When it reaches temperature Tc, the system is put

on the cold reservoir and the piston reverses direction. Compression normally heats a

gas so, to keep the temperature constant, heat Qc must be exhausted into the reservoir.
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4 Adiabatic compression (compression) The gas is then removed from the cold reservoir

and the compression continues until its temperature has risen to Th. At this point it is

back to where it started and is ready to repeat the cycle.

For a process to be reversible the entropy of the universe must not increase.
Therefore heat transfer must be carried out at equal temperatures and volume
transfer at equal pressures (equation 9.7). Although heat flows from hot to cold,
the flow rate goes to zero in the limit of equal temperatures. The same is true for
volume transfer in the limit of equal pressures. So for an engine to be reversible,
the heat and work transfers must proceed at infinitesimal rates. Hence, infinite
time is required to complete a cycle. So a reversible engine, such as Carnot’s, is
purely theoretical and not at all practical.

G.2 Carnot efficiency

The efficiency of a Carnot engine can be determined from the temperatures of the
hot and cold reservoirs alone. After one complete cycle, the entropy and all other
properties return to their original values. The entropy changes only during the
two isothermal stages, because those are the only times when heat enters or leaves
the engine. It receives Qh at temperature Th and exhausts Qc at temperature Tc.
Therefore, for one complete cycle,

�Scycle = 0 = Qh

Th
− Qc

Tc
⇒ Qh

Th
= Qc

Tc
(Carnot). (13.9)

This shows that the amount of heat transferred is proportional to the temperature,
so we can write the efficiency (equation 13.3) of the Carnot engine in terms of
the temperatures:

eCarnot = Qh − Qc

Qh
= Th − Tc

Th
= 1 − Tc

Th
. (13.10)

G.3 The efficiency of other engines

To show that a reversible engine has the maximum possible efficiency, we consider
a reversible engine r and any other engine a. We use the entire work output of
the second engine to drive the reversible engine backwards, making it operate as
a refrigerator.

As is illustrated in Figure 13.12, engine a takes heat Qa
h from the hot reservoir,

does work W with it, and exhausts the remaining Qa
c into the cold reservoir.

The work output W goes entirely into the reversible engine. With this work, the
reversible engine takes heat Qr

c from the cold reservoir and deposits Qr
h into the

hot reservoir. If we put both engines inside a “black box” (the broken-line box
in in Figure 13.12) then all we see is a net transfer of energy from the hot to the
cold reservoir:

Qnet = Qa
h − Qr

h.
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Figure 13.12 Proof that a
reversible engine r is
more efficient than any
other engine a. The work
from engine a drives the
reversible engine
backwards. The combined
system (inside the
broken-line box) simply
transfers heat Qa

h−Qr
h

from the hot reservoir to
the cold one. Because the
second law demands that
heat flows from hot to
cold, Qa

h≥ Qr
h, and so

(W/Qo
h) ≤ (W/Qr

h). That is,
engine a cannot be more
efficient than the
reversible engine r .

The second law requires that heat flows from hot to cold and not vice versa, so
Qnet ≥ 0. This has implications as follows:

Qa
h ≥ Qh

r ⇒ W

Qa
h

≤ W

Qr
h

⇒ ea ≤ er . (13.11)

So we have proven that no engine a operating between these two reservoirs may
have efficiency greater than that of a reversible engine.

G.4 Lessons for other engines

The Carnot engine gives us insight into how to make real engines more effi-
cient. Equation 13.10 tells us that a smaller temperature ratio Tc/Th should
make a more efficient engine. In practice, the low temperature, Tc, is restricted
by the environment. To make it colder would require refrigeration. As you can
show in the homework problems, the work needed to refrigerate the cold reser-
voir is greater than the work gained by the greater temperature differential.
So you lose more than you gain. The upper limit on temperature Th is usu-
ally decided by materials. The engine must be sturdy and durable, and higher
temperatures take a toll in these areas. Stationary engines, such as those in
power plants, can usually be made of more durable materials than portable
engines, such as those in automobiles and airplanes. Consequently station-
ary engines can operate at higher temperatures and therefore are usually more
efficient.

In real engines friction, turbulence, temperature gradients, and other dissipa-
tive and nonequilibrium effects cause the entropy to increase, making the actual
efficiency fall short of the maximum possible, i.e., the efficiency of a reversible
engine. The “coefficient of utility” is a measure of how close a real engine comes
to achieving the maximum possible efficiency for the temperatures between which
it operates:

coefficient of utility = actual efficiency

Carnot efficiency
. (13.12)
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Summary of Sections F and G

To analyze an engine, we can consider its cycle as a series of stages, each subject to

the one most appropriate constraint. Isobaric, isochoric, adiabatic, and isothermal

constraints are common. The constraint reduces the number of independent

variables to one, so all properties (e.g., �W , �Q, �S, �E) can be expressed in

terms of just one variable.

The molar enthalpy of the working fluid can be determined from measurements

of temperature and pressure. The heat added to the system, Qext, or the work done by

the system, Wext, during any stage can then be determined from the change in

enthalpy (equation 13.6):

H2 − H1 = Qext − Wext (any fluid).

If the working fluid is an ideal gas, this becomes (equation 13.8)

H2 − H1 = nC p(T2 − T1) = Qext − Wext (ideal gas)

The Carnot cycle is reversible and consists of four stages:

1 isothermal expansion in contact with the hot reservoir at Th;

2 adiabatic expansion during which the temperature drops from Th to Tc;

3 isothermal compression in contact with the cold reservoir at Tc;

4 adiabatic compression during which the temperature rises from Tc back to Th.

For an engine to be reversible requires there to be no change in total entropy and

thus no temperature or pressure difference between the engine and the systems with

which it interacts. Consequently, both heat transfer and work must proceed infinitely

slowly.

In the isothermal stages, the heat transfer is in proportion to the reservoir’s

temperature. Therefore, the efficiency of the Carnot engine is given by

(equation 13.10)

eCarnot = Qh − Qc

Qh
= Th − Tc

Th
= 1 − Tc

Th
.

Because it is reversible, the Carnot engine is the most efficient engine possible

operating between any two given temperatures.

Study of the Carnot engine suggests that we can make real engines more efficient

if we (a) minimize the ratio Tc/Th and (b) minimize the entropy loss due to

temperature and pressure differentials, friction, turbulence, etc. The coefficient of

utility is a measure of how close an engine comes to achieving its maximum

possible efficiency (equation 13.12):

coefficient of utility = actual efficiency

Carnot efficiency
.
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H Some common internal combustion engines

We now look more closely at some of the more popular engines. We begin with
internal combustion engines, where the heat source is chemical explosions within
the engine itself. These engines tend to be relatively small and portable and are
used in cars, trucks, power tools, jets, and airplanes. Whether they use pistons or
turbines, internal combustion engines have open cycles; the combustion products
are exhausted along with the unused heat each cycle and the fuel is drawn in
with the fresh supply of air. The values of W and Qh can be determined from
measurements of enthalpies, as discussed earlier this chapter, or alternatively W
can be determined from mechanical measurements and Qh from the heat content
of the fuels consumed.

H.1 Four-stroke gasoline engines

Although some small gasoline piston engines have just two strokes per cycle,
those that are perhaps more familiar to you have two extra strokes: one to exhaust
the combustion products and one to draw in the fuel mixture for the next ignition.
The stages of these four-stroke gasoline engines are illustrated in Figure 13.13,
along with actual and model “Otto” cycles on p--V and T--S diagrams. These
stages are as follows.

1 Power stroke

(a) Ignition With the fuel--air mixture near maximum compression, a spark ignites

them. The pressure and temperature rise quickly during this explosion.

(b) Expansion The hot gas then pushes forcefully against the piston, the pressure and

temperature falling as the gas expands adiabatically.

2 Exhaust stroke

(a) Pressure release At the end of the expansion stroke, the exhaust valve opens, the

exhaust escapes, and the pressure drops to nearly atmospheric.

(b) Purge With the exhaust valve still open, the moving piston continues to force out

the waste heat and combustion products.

3 Intake stroke

The exhaust valve closes and the intake valve opens. As the piston moves back down,

the fuel--air mixture enters from the carburetor.

4 Compression stroke

The intake valve closes. The moving piston compresses and heats the fuel--air mixture

until it is ready for ignition, and the cycle repeats.

H.2 Four-stroke diesel engines

The four-stroke diesel and gasoline engines are similar. The diesel fuel burns more
slowly (Figure 13.14a), so the timing of the onset of ignition (i.e., the spark) is
not as crucial. In fact, many diesel engines do not even use a spark. Rather, during
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Figure 13.13 (Left) The
four strokes of an internal
combustion piston
engine, the first and
second strokes each
being divided into two
stages. (Right) p--V and
T--S plots for the cycle,
the first representing the
actual cycle and the other
two representing the
single-constraint model
Otto cycle.

compression the fuel mixture’s temperature rises to the point where it can ignite
easily with the help of a hot “glow plug.”

In gasoline engines the piston moves relatively little during the fast-burning
ignition stage, so we model this part of the cycle as heat input under isochoric
conditions. By contrast, the diesel fuel burns so slowly that the piston moves
considerably as the fuel is burning. Therefore it is more appropriate to model this
stage of the engine’s operation as being heat addition under isobaric conditions,
as indicated in Figures 13.14b, c.
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Figure 13.14 p--V and
T--S diagrams for a
four-stroke diesel piston
engine. Plot (a) represents
a real engine whereas
plots (b) and (c) represent
the single-constraint
model cycle used to
simplify calculations. The
main difference from the
gasoline engine is that
the diesel fuel burns more
slowly.

H.3 Jets and other gas turbines

We now look at gas turbine engines that use internal combustion. The cycle is
described below and illustrated in Figure 13.15.

1 Intake and compression (adiabatic compression) Air is drawn in and compressed.

The work required for compression is taken from the work output of the turbine (often

on the same axle). Fuel is sprayed into it.

2 Ignition (heat input) The fuel--air mixture is ignited.

3 Turbine (adiabatic expansion) The hot gases then shoot out through the turbine.

Although the pressure of the gas entering the turbine is essentially the same as that

leaving the compressor, the much higher temperature means that the volume is corre-

spondingly much larger and therefore more work is done in the turbine.

3

4
exhaust

fuel injection
1

and compression

compressor

turbine

combustor

ignition
2

Qc

power

WoutWin

Qh

p

V

T
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2  isobaric

4  isobaric

1  adiabatic
3  adiabatic

2  isobaric 3  adiabatic

1  adiabatic 4  isobaric

Figure 13.15 Illustration of an internal combustion gas turbine engine, such as that
used in jet aircraft.
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Figure 13.16 p--V and
T--S diagrams for a
typical fluid (not drawn to
scale) indicating regions
where it is a liquid, a gas,
and a mixture of the two.
See if you can understand
the slopes of the lines for
the processes marked
adiabatic, isothermal,
isobaric, and isochoric.
Above the critical point a
distinction between gas
and liquid can no longer
be made.

In the case of jet engines, the turbine blades draw off from the escaping gases
only enough work to run the compressor and whatever generators and ancillary
equipment are needed for the airplane. The rest of the work remains in the motion
of the escaping gases. From Newton’s third law, it is the momentum of these
escaping gases that provides the forward thrust to the airplane.

If you compare this with our earlier description of a gas turbine cycle, you
may think that the fourth stage, the exhausting of the remaining heat, is missing.
It isn’t. Instead of being exhausted into the atmosphere via a heat exchanger, it
is exhausted directly with the escaping gases, as fresh cool gases are drawn in
through the intake scoop.

I Vapor cycles

Vapor cycles are characterized by a fluid that transforms back and forth between
the liquid and gaseous phases. Refrigerators employ a variety of refrigerants, but
engines usually use water/steam in their vapor cycles.

I.1 Phase diagrams

To analyze engine performance in vapor cycles, it is helpful to have p–V and
T –S phase diagrams for the working fluid. Generic examples of such diagrams
are shown in Figure 13.16. The term “mixed phase” means that the fluid is partly
liquid and partly gas.

To understand these diagrams, see whether you can describe what is happening
as you move along each of the lines. In particular, answer each of the following
questions for each line, one process at a time.
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Figure 13.17 Elements of
a steam turbine engine.
The water goes through
the following cycle: (1)
the boiler adds heat Qh;
(2) the turbine extracts
work Wout; (3) the
condenser removes heat
Qc; (4) the pump pushes
the water back into the
boiler, doing work Win.
With temperature and
pressure gauges, we can
determine the enthalpy at
the points a, b, c, d, which
tells us the heat transfer
and work done during
each of the four stages.

� Is heat being added, removed, or neither?
� Is the volume increasing, decreasing, or neither?
� Within the mixed phase, is liquid evaporating or gas condensing, and why?
� As the system crosses from the gaseous to the mixed phase, what is happening and why?

I.2 Rankine cycle

The Rankine cycle is widely used in power plants. It resembles a gas turbine cycle
but includes liquid--vapor transitions. It is illustrated in Figure 13.17 and goes as
follows.

1) Boiler (hot reservoir) Liquid water enters the boiler, where it is heated by some

external source such as contact with pipes containing superheated steam from a nuclear

reactor or fossil fuel furnace. The heat vaporizes the water, producing very hot and

highly pressurized steam in the boiler.

2) Turbine (adiabatic expansion) The hot steam then shoots through a turbine, turning

the blades as it expands and cools. In the particular case of electrical power production,

the turbine shaft is connected to an electrical generator, so the work done by the steam

on the turbine blades is turned into electrical energy.

3) Condenser (cold reservoir) The cooled steam then passes through a heat exchanger

such as a large radiator immersed in the cold waters from a nearby river. This cools it

sufficiently for it to condense completely into the liquid state again.

4) Pump (adiabatic compression) The liquid water then gets pumped back into the boiler

under high pressure, where it is ready to repeat the cycle.

As illustrated in Figure 13.17, an analysis of the cycle can be accomplished by
the placement of temperature and pressure gauges at the points a, b, c, d; these
measurements enable us, using equation 13.6, to obtain the enthalpy of the steam
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Figure 13.18 Illustration
of a gas turbine engine
with a second-stage
compressor and a ‘‘reheat
cycle.”The shaded areas
in the p--V and T--S
diagrams are added by
the second compressor
7--8 and by the reheat
cycle 3--4.

or water at these four points, from which such things as the engine’s efficiency
can be determined: we have

e = Wnet

Qh
= Wout − Win

Qh
, or = Qh − Qc

Qh

with

Qh = Hb − Ha, Qc = Hc − Hd , Win = Ha − Hd , and Wout = Hb − Hc.

J Increasing the efficiency

Particularly in view of our dependence on rapidly diminishing non-renewable
energy resources, there is considerable interest in increasing the efficiency of
our engines. One way to do this is to reduce the entropy loss to temperature and
pressure variations within the engine’s working fluid and to friction in the moving
parts. But other ways to increase the efficiency are revealed by our analysis of
Carnot engines:

� increase the average temperature at which heat enters the engine;
� decrease the average temperature at which heat is exhausted.

For the gas cycle, we can create higher temperatures by greater compression
before ignition and lower temperatures by greater expansion during the power



Engines 275

stroke. So a larger compression ratio, the ratio of the gas’s maximum and minimum
volumes,

compression ratio = Vmax

Vmin
, (13.13)

promotes higher efficiency. Piston engines achieve larger compression ratios
through either greater compression before ignition or longer power strokes. Gas
turbine engines achieve larger compression ratios by using staged compressors
and turbines, such as the cycle illustrated in Figure 13.18.

Summary of Sections F--I

Internal combustion engines use open cycles, and this allows them to purge the

combustion products and receive a fresh fuel supply each cycle. Piston engines often

have two extra strokes to accomplish this. One pair of compression and expansion

strokes dispenses the normal four stages of a gas piston engine (ignition, power,

exhaust, compression), and another pair of strokes purges the combustion products

and draws in the fresh fuel mixture. The fuel ignites at the end of the compression

stroke. Gasoline burns quickly, so the combustion is modeled as isochoric heat

addition. Diesel fuel burns more slowly and the combustion is modeled as isobaric

heat addition. Otherwise the two engines work similarly.

Internal combustion gas turbine engines continuously exhaust the combustion

products, along with the excess heat leaving the turbine, and also continuously bring

a fresh fuel mixture into the compressor.

The p–V and T –S phase diagrams for any fluid used in vapor cycles include a

substantial region of mixed phase, partly liquid and partly gas. A Rankine cycle is a

vapor cycle commonly used in power production, usually with water as the working

fluid. The Rankine cycle is similar to a gas turbine, but in such a cycle the vapor

becomes liquid in the condenser (by heat removal) after leaving the turbine, and then

is pumped to the boiler, where it is vaporized again (by heat addition) before

shooting through the turbine.

The efficiency of engines can be increased by decreasing the ratio Tc/Th, that is,

by increasing the differential between the temperature at which heat enters the

engine and the temperature at which it is exhausted. One way of accomplishing this

is to increase the compression ratio, defined as the ratio of the gas’s maximum and

minimum volumes during the cycle (equation 13.13):

compression ratio = Vmax

Vmin

For piston engines, this could be accomplished by compressing the gas into a

smaller volume before ignition and/or by having a longer expansion stroke before

exhaust. For gas turbines, we could use staged compressors to compress the gas

more before ignition, and staged turbines to allow the gases to expand further.
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Problems

Section A
1. Consider n moles of an ideal gas with ν degrees of freedom per molecule,

initially at temperature Ti, which expands from volume Vi to Vf. Calculate
the heat added �Q and work done �W in terms of n, ν, Ti, Vi, and Vf if the
expansion is (a) isobaric, (b) isothermal, (c) adiabatic.

2. Show that for adiabatic processes in an ideal gas the work done is given by
�W = (piVi − pfVf)/(γ − 1).

3. One mole of an ideal gas at 300 K is expanded isothermally until its vol-
ume is doubled. How much heat energy is absorbed by the gas during this
process?

Section B
4. Heating a stretched rubber band increases its tension, making it tend to

contract, and a contracting rubber band tends to cool off. You are invited
to design an engine that does work by pulling rather than pushing. You will
need a hot reservoir, a cold reservoir, and a rubber band with one end fixed
and one attached to a movable piston. Suppose that the heat addition and
removal are done isothermally (e.g., the system is immersed in reservoirs as
appropriate). Sketch and label the four parts of the cycle for this engine, and
also sketch and label the four parts on a F–L diagram, which is like a p–V
diagram, except using tension (−F) and length (L). (Note that the work done
is dW= −FdL , because the system is pulling, not pushing.)

5. Repeat the above problem for the case where the heat is added and removed
under conditions of constant length.

6. The cylinder in an automobile engine has a radius of about 5 cm. The top of
the piston begins its compression stroke at about 23 cm from the head end
and travels about 18 cm during the stroke. The gas in the cylinder behaves
as an ideal gas with five degrees of freedom per molecule. It begins at 310 K
and 1 atm pressure when the piston is at the bottom of its stroke (i.e., fully
expanded).
(a) How many moles of gas are in the cylinder?
(b) What are the temperature and pressure of the gas at the end of the adia-

batic compression stroke?
(c) How much work is done on the gas by the piston during the compression

stroke?
(d) When the gas is completely compressed, the combustion of the gasoline

increases the temperature by another 800 K. What is the temperature
now?

(e) How much heat energy has been added to the gas?
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(f) How much work is done by the gas as it expands adiabatically back to
its starting point?

(g) What is the efficiency of this engine?

7. Suppose that the gas piston engine of Figures 13.2 and 13.3 starts at pres-
sure and volume p1, V1. It is heated isochorically until its pressure is p2,
then expanded adiabatically until its volume is V3, and next undergoes iso-
choric cooling and adiabatic compression to complete the cycle. In terms of
γ, p1, V1, p2, and V3, find
(a) the pressure and volume at the end of each stage,
(b) the heat added �Q and the work done �W for each of the four

stages. Hint: �Q = nCV �T for isochoric processes, with CV = (ν/2)R
and ν/2 = [1/(γ − 1)], pV = n RT .

8. Consider the gas turbine engine of Figure 13.5. Suppose that the gas starts
at pressure and volume p1, V1. It is heated isobarically until its volume
is V2 and then expanded adiabatically until its volume is V3. The cycle is
then completed with isobaric and then adiabatic compression. In terms of
γ, p1, V1, V2, and V3, find
(a) the pressure and volume at the end of each stage,
(b) the heat added �Q and work done �W for each of the four stages.

Hint: �Q = nC p�T for isobaric processes, with C p = [(ν + 2)/2]R
and (ν + 2)/2 = [γ /(γ − 1)], pV = n RT .

9. Redraw the two diagrams in Figure 13.3 for the case where the piston engine
receives and exhausts heat under isobaric, rather than isochoric, conditions.

10. You are interested in finding the heat added �Q, the work done �W , and
the change in internal energy �E for each stage of the engine model cycle
depicted in Figures 13.2 and 13.3. Complete the following table for the values
of �Q, �W, �E for each of the four stages, giving the energies in joules.
What is the efficiency of this engine?

�Q �W �E

Stage 1 5
Stage 2 4
Stage 3 −2
Stage 4

11. Consider a four-stage gas engine whose cycle goes as follows: isobaric expan-
sion, isothermal expansion, isochoric heat removal, adiabatic compression.
Sketch this cycle (a) on a p–V diagram, (b) on a T –S diagram. (c) Make
a table showing the signs +, −, 0 for �Q, �W, �E for each of the four
stages.



278 Introduction to thermodynamics and statistical mechanics

12. Repeat problem 11 for a four-stage gas engine whose cycle goes as follows:
isothermal expansion, isochoric heat removal, isobaric compression, adia-
batic compression.

13. Repeat problem 11 for a four-stage gas engine whose cycle goes as follows:
isothermal expansion, adiabatic expansion, isobaric compression, isochoric
heat addition.

14. A certain engine contains n moles of an ideal gas whose molecules each have
ν degrees of freedom. It begins its cycle at pressure, volume, and temperature
p0, V0, T0. In stage 1 it expands isobarically to volume 2V0 . In stage 2 its
pressure drops isochorically to p0/2. In stage 3 it is compressed isobarically
back to its original volume, V0. In stage 4 it is heated isochorically back to
its starting point.
(a) Sketch this cycle on a p–V diagram.
(b) Express T0 in terms of (p0, V0, and n).
(c) Make a table expressing the work done, the heat added, and the change

in internal energy for the engine in each of the four stages, expressing
them in terms of n RT0.

(d) What is the efficiency of this engine?
(e) The maximum efficiency of an engine operating between the temperature

extremes Th and Tc is given by e = (Th − Tc)/Th. What would be the
maximum efficiency of an engine operating between the temperature
extremes of the engine considered above?

15. A 1 gigawatt electrical power plant is 40% efficient.
(a) If coolant water flows through it at a rate of 2.16 × 105 m3/ hour, by how

many degrees Celsius is the coolant water heated? (Water’s specific heat
is 4186 J/kg and its density is 103 kg/m3.)

(b) If the power plant uses evaporative cooling, how much water is evaporated
per second? (It takes about 2.5 × 106 J to heat up and evaporate 1 kg of
water.)

Section C
16. Is the integral

∫
pdV around the cycle in Figure 13.7 positive or negative?

17. The cycles of the refrigerator of Figure 13.7 and the gas turbine of Figure
13.5 are quite similar. In particular, both send the working fluid to the hot
reservoir after passing through the compressor. But in one you would expect
the hot reservoir to be slightly hotter than the coils, and the other the hot
reservoir would be slightly cooler. Which is which, and why?

18. What are the lower and upper limits on:
(a) the efficiency of an engine,
(b) the coefficient of performance for a refrigerator?
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Sections D, E, and F
19. Consider one mole of an ideal gas with ν degrees of freedom per molecule

and temperature T. In terms of ν and T , what would be the slope of the curve
on a T –S plot for (a) isochoric heat addition, (b) isobaric heat addition, (c)
isothermal heat addition? (d) Do these have curvature and, if so, are they
concave upwards or downwards?

20. Consider one mole of an ideal gas with ν degrees of freedom per molecule
and pressure and volume p, V . In terms of ν, p and V , what would be the
slope of the curve on a p–V plot for (a) isobaric expansion, (b) isothermal
expansion, (c) adiabatic expansion? (d) Do these have curvature and, if so,
are they concave upwards or downwards?

21. Show that for the isothermal expansion of an ideal gas at temperature T (see
Table 13.1):
(a) �Q = n RT ln(V2/V1);
(b) �S = n R ln(V2/V1).
(c) Express these in terms of p1, p2, and T.

22. Show that for isobaric processes in an ideal gas (see Table 13.1):
(a) �S = nC p ln(T2/T1);
(b) �W = n R�T .
(c) Express these in terms of p, V2, and V1.

23. Consider an ideal gas that has initial pressure and volume pi, Vi and under-
goes isothermal expansion to volume Vf. Find the following in terms of
pi, Vi, and Vf:
(a) the work done by the gas;
(b) the final pressure, pf.

24. An ideal gas whose molecules each have five degrees of freedom has initial
pressure and volume pi, Vi. If this gas undergoes adiabatic expansion to
volume Vf, find the following in terms of pi, Vi, and Vf:
(a) the work done by the gas;
(b) the final pressure, pf.

25. Consider an ideal gas whose molecules each have five degrees of freedom.
It starts out at pressure and volume p1, V1, is isothermally expanded to vol-
ume V2, and then adiabatically expanded further, to volume V3. In terms of
p1, V1, V2, and V3, find the following:
(a) the total work done by the gas during the expansion,
(b) the final pressure, p3.

(If necessary refer to the previous two problems.)

26. Consider an ideal gas having initial pressure and volume p1, V1. In terms of
p1, V1, and γ , write down an expression for the variation of p with V during
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(a) isothermal expansion, (b) adiabatic expansion. (c) Show that the slope
dp/dV of the path on a p–V diagram is steeper for adiabatic processes than
for isothermal processes, given that γ = C p/CV > 1.

27. The equation of state for a certain material is pV 10T 5 = constant. This mate-
rial starts out at (p, V, T ) = (1 atm, 0.5 liters, 300 K). Its heat capacity is
Cp = 3.5 J/K. It is compressed until its volume is reduced by 1%. Calcu-
late the heat added to the system if the compression is (a) isothermal (use
Maxwell’s relations, writing p = constant/V 10T 5, and taking ∂p/∂TV ), (b)
isobaric. Hint: �Q = (∂ Q/∂V )�V .

28. A system whose equation of state is p6T −1eaV = b, where a and b are con-
stants, expands isobarically at pressure p from volume V1 to volume V2.
Find expressions for �W, �Q, �S, and �E in terms of p, Cp, V1, V2, a,

and b.

29. Consider a refrigerator or heat pump, as in Figure 13.7, for which
the fluid temperatures just before entering stages 1, 2, 3, 4 are given by
40 ◦C, 20 ◦C, −10 ◦C, 5◦C, respectively. The operating fluid is a gas with
five degrees of freedom per molecule. For each mole of fluid that passes
through the cycle, find
(a) the work done on the gas by the compressor,
(b) the heat energy released by the gas into the hot reservoir,
(c) the energy lost to work in the expansion chamber,
(d) the heat absorbed in the cold coils,
(e) the coefficient of performance for this refrigerator.

30. Assuming that water vapor is an ideal gas with ν = 6, calculate the following
for one mole:
(a) The enthalpy at 400 ◦C and 3 atm pressure;
(b) the enthalpy at 100 ◦C and 1 atm pressure;
(c) the enthalpy of one mole of liquid water at 100 ◦C and 1 atm pressure.

Hint: �H = �E + �(pV ), with �E = �Q − �W ; �Q can be
obtained from the latent heat and �W = p�V is the work done on
the water vapor by the atmosphere as its volume decreases from the
gaseous to the liquid phase.

(d) Use the answer to part (c) and the specific heat of water to find the
enthalpy at 50 ◦C and 1 atm.

(e) Use the answer to part (c) and the specific heat of water to find the
enthalpy at 10 ◦C and 8 atm. (Liquid water is essentially incompressible.)

31. The cylinder of a piston engine contains an ideal gas whose molecules have
five degrees of freedom apiece. The gas initially has volume 0.2 × 10−3 m3,
pressure 5 × 105 Pa, and temperature 600 ◦C. It is then expanded to a volume
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1.0 × 10−3 m3. Calculate the heat added �Q and the work done �W if the
expansion is (a) isothermal, (b) isobaric, (c) adiabatic.

32. Consider a three-stage engine whose working fluid is one mole of a gas whose
molecules have five degrees of freedom each. Each cycle starts at pressure
and volume p1, V1 and expands to volume V2. In terms of p1, V1, and V2,
find the heat added �Q and work done �W for each of the three stages if
the cycle is:
(a) adiabatic expansion, followed by isobaric compression, followed by iso-

choric heat addition,
(b) isothermal expansion, followed by isobaric compression, followed by

isochoric heat addition,
(c) adiabatic expansion, followed by isothermal compression, followed by

isochoric heat addition,
(d) isothermal expansion, followed by isochoric heat removal, followed by

adiabatic compression.
Sketch a p–V diagram for each of the above processes.
Sketch a T –S diagram for each of the above processes.

33. Consider a three-stage engine whose working fluid is one mole of a gas whose
molecules have five degrees of freedom each. At the first stage the gas starts
at temperature T1 and expands until the temperature falls to T2. For each of
the two cycles described below, sketch the p–V diagram. Also, find the heat
added �Q and the work done �W for each of the three stages in terms of
T1, and T2.
(a) Adiabatic expansion, followed by isothermal compression, followed by

isochoric heat addition.
(b) Adiabatic expansion, followed by isobaric compression, followed by

isochoric heat addition.

34. Consider a four-stage engine whose working fluid is one mole of a gas whose
molecules have five degrees of freedom each. It starts at temperature T1,
expands isobarically until the temperature rises to T2, expands adiabatically
until the temperature falls to T3 (>T1), and undergoes isochoric heat removal
until the temperature falls back to T1 and then isothermal compression back
to the starting point.
(a) Calculate the heat added �Q and the work done �W during each stage

of this cycle interms of T1, T2, T3.
(b) Sketch the cycle on a p–V diagram.
(c) Sketch the cycle on a T –S diagram.

35. An ideal diatomic gas of n moles at initial pressure and volume p0, V0 expands
to final volume 2V0.
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(a) Calculate the heat added, the work done, and the change in internal
energy for each of three cases: the expansion is isobaric, isothermal, or
adiabatic. Express your answers in terms of p0V0.

(b) Calculate the final temperature in terms of n, p0, and V0 for each of
these cases.

36. You have a material (not unlike water) whose molar specific heat Cp at atmo-
spheric pressure is 30J/(mole K) in the gaseous phase, 75 J/(mole K) in the
liquid phase, and 35 J/(mole K) in the solid phase. Furthermore, the material
condenses at 373 K with a latent heat of 41 000 J/mole and freezes at 273
K with a latent heat of 6000 J/mole. Assuming that it behaves as an ideal
gas at 600 K, find (a) its enthalpy at 600 K, (b) its molar enthalpy at 500 K,
374 K, 372 K, 323 K, 274 K, 272 K, and 200 K.
(At constant pressure, �H = �E + p�V = �Q, so you don’t have to worry
about changes in volume at phase transitions.)

37. Show that the change in molar enthalpy of an ideal gas that is expanded or
compressed adiabatically is given by �h = ∫

vdp = (
γ

γ−1

)
(p f v f − pivi ).

Section G
38. Consider the Carnot cycle, shown in Figure 13.11. Suppose that the tem-

peratures of the hot and cold reservoirs are 800 K and 400 K, respectively.
Complete the following table for the values of �Q, �W , �E for each of the
four stages, where the energies are in joules. (The system is an ideal gas.)
What is the efficiency of this cycle?

�Q �W �E

Stage 1 4
Stage 2 1
Stage 3 −1
Stage 4 −1

39. You are interested in finding the heat added �Q, the work done �W , and the
change in internal energy �E for each stage of the Carnot cycle depicted in
Figure 13.11. The working fluid is an ideal gas with five degrees of freedom
per molecule (γ = 1.4). It starts out at the beginning of stage 1 with pressure
p1 = 4 × 105 Pa, volume V1 = 10−3 m3, and temperature T1 = 600 K. It
expands isothermally in stage 1 to volume 2V1 and then adiabatically in
stage 2 to volume 3V1.
(a) Make a table showing the pressure, volume, and temperature at the end

of each of the four stages.
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(b) Make a table showing the values of �Q, �W , and �E in joules for each
of the four stages.

(c) What is the efficiency of this cycle?

40. The outside coils of a certain electric heat pump operate at 10 ◦C below
the ambient temperature, and those on the inside operate at 10 ◦C above the
ambient temperature. Otherwise, there are no losses at all. Suppose that the
outside temperature is freezing and the indoor temperature is kept at 17 ◦C.
(a) How many joules of work are required for your heat pump to deposit

one joule of heat energy inside?
(b) Now suppose that the combined power plant and transmission line effi-

ciency is 30%. That is, of the energy of the original primary fuels, 30%
reaches your heat pump as electrical energy. How many joules of energy
in the primary fuels are required per joule of energy delivered to your
house?

(c) Is it a more efficient use of primary fuels to run your electric heat pump
or to burn the primary fuels in your space heater?

41. Consider a system that is interacting thermally, but not mechanically or
diffusively, with outside systems. (An example is the combined system in
the broken-line box of Figure 13.12.) Show that if heat were to flow from
cold to hot then the entropy would decrease, in violation of the second
law.

42. You can prove in the following way that it is overall more efficient for an
engine to exhaust at the ambient environmental temperature than to exhaust
at a cooler temperature that requires refrigeration. Suppose that the hot
reservoir is at Th, the ambient temperature is Ta, and the refrigerated tem-
perature is Tc. The engine cannot put out more work than would a Carnot
engine operating between Th and Tc, so Weng = eQh = a[(Th − Tc)/Th] Qh,
where a ≤ 1. Likewise the refrigerator cannot require less work input than
a Carnot refrigerator, so Wfrig = bQa[(Ta − Tc)/Ta], where b ≥ 1. The net
work output is that from the engine minus that needed to run the refrigerator,
Wnet = Weng − Wfrig. Show that this quantity is less than the work you would
get out of the engine if it simply ran between Th and Ta without any refrig-
eration, which would be Weng = aQh[(Th − Ta)/Th]. (For the Carnot engine,
Qh/Th = Qa/Ta.)

43. For a Carnot cycle, prove that Qh/Th = Qc/Tc using the following approach.
First calculate Qh and Qc in terms of the volumes during isothermal expan-
sion and contraction of an ideal gas. Then use TV γ−1 = constant for adia-
batic processes to relate the ratios of the volumes appearing in this result.
This should give you the result you need. (To avoid confusion, sketch out the
four stages on a p–V diagram and label the four end points.)
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44. A motorcycle engine does work at a rate of about 6 kW while burning a liter
of gasoline every 20 minutes.
(a) Given that the mass of one gasoline molecule is about 114 atomic mass

units (1 amu = 1.66 × 10−27 kg), and the mass of a liter of gasoline is
0.7 kg, how many gasoline molecules are there in a liter?

(b) If each gasoline molecule releases 57 eV of energy upon oxidation, how
much heat energy (in joules) is provided by burning one liter of gasoline?

(c) How much work (in joules) is done altogether by the engine while it
burns 1 liter of gasoline?

(d) What is the efficiency of this motorcycle engine?

45. The ignition temperature for the gasoline in the motorcycle in problem 44 is
1100 K and the exhaust temperature is 570 K.
(a) What is the Carnot efficiency for an engine operating between these

temperatures?
(b) What is the coefficient of utility for the motorcycle engine?

46. Most electrical power is produced by burning fossil fuels. The heat produced
is used to run steam turbines that drive generators. The combustion temper-
ature can be controlled to some extent through dilution of the combustion
gases with extra air passing through the furnaces. To make our limited fossil
fuel resources stretch as far as possible, should we make the combustion
temperature as high or as low as possible? Why?

Sections H
47. Why do we model the heat transfer for gasoline piston engines as isochoric

and that for turbine engines as isobaric?

48. For a typical engine operating speed of 4000 rpm, estimate the time needed
for the gasoline and diesel fuel mixtures to burn, respectively.

49. Consider an engine whose working system is n moles of a gas whose
molecules have five degrees of freedom apiece. The engine undergoes a
three-stage cycle, starting at pressure and volume p1, V1. The first stage is
isobaric expansion to volume V2, the second stage is adiabatic expansion, and
the third stage is isothermal compression back to the starting point (p1, V1).
In terms of n, p1, V1, and V2, find
(a) the pressure, volume, and temperature at the end of each stage,
(b) the heat added, the work done, and the change in internal energy during

each stage.

50. Consider an engine whose working system is n moles of a gas whose
molecules have five degrees of freedom apiece. It has a three-stage cycle,
starting at pressure and volume p1, V1. The first stage is isochoric heat addi-
tion until the pressure reaches p2, the second stage is adiabatic expansion, and
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the third stage is isothermal compression back to the starting point (p1, V1).
In terms of n, p1, V1, and p2, find
(a) the pressure, volume, and temperature at the end of each stage,
(b) the heat added, the work done, and the change in internal energy during

each stage.

51. Consider the Otto cycle, shown in the p–V diagrams of Figure 13.13, and
assume that the gas is a diatomic ideal gas. Imagine that after the intake
stroke the temperature and pressure of the gas are 300 K and 105 Pa.
(a) If it is then compressed adiabatically to 1/10 its initial volume, what is

its new pressure and temperature?
(b) Suppose that the sudden ignition of the fuel then doubles the temperature

of the gas (isochorically). What is this new temperature of the gas?
(c) What is the maximum possible efficiency of an engine that operates

between the highest and lowest temperatures in this Otto cycle?

52. A car that gets 20 miles to the gallon is travelling down the highway at 60
miles per hour. The engine is 20% efficient. The heat content of a gallon of
gas is about 1.3 × 108 J. What is the rate (in kilowatts) at which the engine
is doing work?

Section I
53. On a p–V phase diagram such as that in Figure 13.16, sketch the path followed

during isothermal expansion for a fluid that starts out as a liquid.

54. On a T –S phase diagram such as that in Figure 13.16, sketch the path followed
during isobaric heat addition for a fluid that starts out as a liquid.

55. The tropical ocean is a giant collector of solar energy. Surface waters have
temperatures around 24 ◦C, and deeper waters have temperatures around 4 ◦C.
This temperature differential can be used to run engines that drive electrical
generators.
(a) Estimate the amount of solar energy Qh − Qc stored in the ocean by

means of this temperature differential; the warm surface layer is typically
200 m thick and the tropical ocean covers about 1/3 of the Earth’s surface
area. (Earth’s radius is 6400 km.)

(b) The world consumes energy at a rate of about 9 billion kilowatts. How
many joules of energy is this per year?

(c) What fraction of the solar energy stored in the oceans would have to be
harvested annually to meet the world’s energy needs?

(d) Answer part (c) for the case where 90% of the energy is lost during
conversion.

(e) What is the Carnot efficiency for engines running between these two
temperatures?
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(f) What is the actual efficiency for engines running between these two
temperatures if the coefficient of utility is 0.1?

56. The solar power incident on the Earth’s surface, averaged over all lati-
tudes, seasons, weather conditions, and times of day and night, is about
175 watts/m2. How does the rate at which the Earth receives solar energy
compare with the rate at which humans consume energy? (The Earth’s human
population consumes energy at a rate of 9 billion kilowatts, and the Earth’s
radius is 6400 km.)
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In Chapter 9 we showed that temperature governs thermal interactions, pressure
governs mechanical interactions, and chemical potential governs diffusive inter-
actions. They do this in ways that are so familiar to us that we call them “common
sense”:
� thermal interaction. Heat flows towards lower temperature.
� mechanical interaction. Boundaries move towards lower pressure.
� diffusive interaction. Particles go towards lower chemical potential.

In this chapter we examine diffusive interactions, working closely with the chem-
ical potential µ and the Gibbs free energy Nµ.
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Figure 14.1 Diffusion
into regions of lower
concentration is
demanded by the second
law, because increasing
the volume per particle
also increases the
entropy. In this example,
when the partition is
removed the diffusion
into previously
unoccupied regions
doubles the number of
states accessible to each
molecule, so the number
of states available to the
system increases by a
factor 2N. Does the
chemical potential
increase or decrease?
(see problem 2)

A The chemical potential

In Chapter 5 we learned that the equilibrium distribution of particles is determined
by the fact that particles seek configurations of

� lower potential energy,
� lower particle concentration.

Although the first of these is familiar in our macroscopic world (e.g., balls roll
downhill), the second is due to thermal motions, which are significant only in the
microscopic world (Figure 14.1).

Both factors trace their influence to the second law. The number of states per
particle, and hence the entropy of the system, increases with increased volume in
either momentum space or position space. Deeper potential wells release kinetic
energy, making available more volume in momentum space, Vp. And lower par-
ticle concentrations mean more volume per particle in position space, Vr .1

The two factors are interdependent. The preference for regions of lower poten-
tial energy affects particle concentrations, and vice versa. There is a trade-off.
The reduction in one must more than offset the gain in the other (Figure 14.2).
We are now in a position to evaluate these interrelationships more precisely and
make quantitative predictions.

A.1 Dependence on temperature and pressure

Suppose that two systems are initially in diffusive equilibrium. What would hap-
pen if we heated or compressed one of them? According to equation 9.13 the
resulting change in chemical potential would be

dµ = −
(

S

N

)
dT +

(
V

N

)
dp, (14.1)

where S, V, N are all positive. So the preference for lower chemical potential
means that particles would flow towards regions of higher temperature (dT > 0)

1 There is a subtlety here involving identical particles The corrected number of states per particle

(equation 6.8) becomes ωc = −eω/N = eVr Vp/Nh3 , so the volume per particle becomes Vr /N .
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Figure 14.2 In the
microscopic world,
thermal energy allows
some particles to diffuse
into regions of higher
potential energy and
lower concentration.
Macroscopic analogies
would be the mist and
spray rising from the base
of Niagara Falls. Most of
the water remains in the
river at the base, but
some mist rises back up
into regions of higher
potential energy and
lower concentration.
(New York State Office of
Parks and Recreation;
Historic Preservation,
courtesy of Allen James)

and lower pressure (dp < 0). The underlying reason is that higher temperature
corresponds to more room in momentum space, Vp, and lower pressure increases
the volume in position space, Vr .

A.2 Dependence on potential energy and
particle concentration

The tendency of particles to seek regions of lower potential energy and lower
concentration can be quantified by manipulating the first law. We begin with the
integrated form (equation 9.12) and solve for µ, as we did in equation 10.3c:

µ = E + pV − T S

N
= ε + pυ − kT ln ωc, (14.2)

where ε, υ, k ln ωc are the average energy, volume, and entropy per particle,
respectively. For further insight, we rewrite each term on the right-hand side, as
follows:

ε = u0 + ν

2
kT, (14.3a)

pυ ≈ kT for gases and pυ ≈ 0 for liquids and solids,2 (14.3b)

ωc = eω

N
= eVp Vr

h3 N
= constant × T ν/2

ρ
. (14.3c)

2 More precisely, it is typically 103 to 105 times smaller than the other terms for solids and liquids.

Beware that the symbol we use for volume per particle “v” is very similar to that which we have

used for molar volume. Although a discerning eye might notice that one is slightly wider and has a

line over the top to indicate average value, context is probably the best way to distinguish between

them.
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For the last expression we have used ρ = N/Vr for particle density together with
Table 6.2 for the dependence of ωc on T. Substituting these formulas into equation
14.2 gives

µ = u0 + kT ln ρ + f (T ), (14.4)

where the function f (T ) depends on the system.
This is the expression we wanted. It displays the dependence of the chemical

potential on the potential energy reference level u0 and the particle concentration
ρ for systems held at any given temperature T. It confirms our previous assertion:
the preference for lower chemical potential means that particles diffuse towards
regions of lower potential energy (lower u0) and lower particle concentration
(lower ρ).

A.3 Equilibrium concentrations

Expression 14.2 can also be used to predict equilibrium concentrations in diffu-
sively interacting systems. Multiplying both sides by (−1/kT ) and exponentiat-
ing, it gives

e−µ/kT = eω

N
e−(ε+pυ)/kT

(
using ωc = eω

N

)
.

If two systems are in diffusive and thermal equilibrium (µ1 = µ2, T1 = T2) then
e−µ/κT is the same for both, which tells us that

ω

N
e−(ε+pυ)/kT is the same for both, hence N ∝ ωe−(ε+pυ)/kT . (14.5)

In the next chapter we will derive this expression in a different way, using

(
number of
particles (N )

)
=

(
number of
states (ω)

)
×

(
probability that a state has
a particle in it

(∝ e−(ε +pυ)/kT
) ) .

Using the expressions for ε and pυ from equations 14.3 ((ε − pυ)/kT =
u0 + constant) and absorbing econstant into the proportionality constant, we can
write equation 14.5 as

N ∝ ωe− u0
kT , (14.5′)

Or, if we prefer to work with particle densities we can divide both sides by the
volume:

ρ ∝ ρωe−u0/kT

(
ρ = N

V
, ρω = ω

V

)
. (14.5′′)
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These equations also confirm our expectation that more particles will be found
where the number of available states ω is larger and the potential energies u0

are lower. Applying 14.5′′ to our atmosphere, for example, where a molecule’s
potential energy at altitude h is given by u0 = mgh, we find that the atmosphere
thins by 1/2 for roughly every 5.6 km of elevation.

Summary of Section A

Temperature rules thermal interactions, pressure rules mechanical interactions, and

chemical potential rules diffusive interactions. Particles move towards regions of

lower chemical potential because that increases the number of accessible states, as

required by the second law.

Chemical potential varies with temperature and pressure according to

(equation 14.1)

dµ = −
(

S

N

)
dT +

(
V

N

)
dp.

Its explicit dependence on potential energy u0 and particle concentration ρ is

revealed by first rewriting the integrated form of the first law (equation 14.2), so that

µ = E + pV − T S

N
= ε + pυ − kT ln ωc,

where ε, υ, k ln ωc are the average energy, volume, and entropy per particle,

respectively, and then rearranging the terms on the right to give (equation 14.4)

µ = u0 + kT ln ρ + f (T ).

Starting with equation 14.2, multiplying by (−1/kT ), and exponentiating both

sides, we can also show that for two systems in equilibrium, the number of particles

(N) is related to their potential energies u0 and the number of states ω through

(equations 14.5, 14.5′, 14.5′ ′)

N ∝ ωe−(ε+pυ)/kT ∝ ωe−u0/kT , or ρ ∝ ρω e−u0/kT .

B Colligative properties of solutions

We now use the tools of the previous section to study the “colligative” properties
of solutions -- those that depend on the concentration of the solute but not on
its nature. We will frequently use sea water as an example, which on average is
about 3.5% salt by weight or 2% salt by number of particles (mostly ions).

B.1 Changes in the chemical potential

Of all the particles in solution, a fraction f are solute particles, which may or
may not have solvent molecules attached. We focus on the remaining fraction,
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1 − f , which are unattached solvent molecules. Because they are not interacting
with the solute, they experience a negligible change in potential energy (u0 is
unchanged).3 If the original pure solvent’s density was ρ0, addition of the solute
reduces its density to (1 − f )ρ0. And, according to equation 14.4, the solvent’s
chemical potential changes by4

�µ = µ − µ0 = kT ln(ρ/ρ0) = kT ln(1 − f ) ≈ − f kT, (14.6)

where we have assumed that f � 1.
We first wish to study the effects of solutes on phase equilibrium, using the

liquid and vapor phases for illustration. Imagine that a liquid of pure solvent is
initially in diffusive equilibrium with its vapor phase (µliq = µvap). We then add
solutes (initially holding the temperature and pressure constant), which decreases
the chemical potential of the liquid solvent in accordance with equation 14.6.

The change in the solvent’s chemical potential means that it is no longer in
diffusive equilibrium with its vapor phase. So there will be a net transfer between
vapor and liquid until equilibrium is reestablished. Since the two phases begin
and end in equilibrium, their two chemical potentials must change by the same
amount. According to equations 14.1 and 14.6, this readjustment requires changes
in temperature and/or pressure according to

−
(

S

N

)
vap

�T +
(

V

N

)
vap

�p = −
(

S

N

)
liq

�T +
(

V

N

)
liq

�p − f kT ,

where the left-hand side is the change in the chemical potential of the vapor,
�µvap, and the right-hand side is the change in the chemical potential of the
liquid, �µliq. Rearranging terms gives

−
[(

S

N

)
vap

−
(

S

N

)
liq

]
�T +

[(
V

N

)
vap

−
(

V

N

)
liq

]
�p = − f kT . (14.7)

We now use this result to look at changes in pressure at constant temperature
(�T = 0) and then at changes in temperature at constant pressure (�p = 0).

B.2 Vapor pressure

For changes in pressure at a fixed temperature (�T = 0), we note that the vapor
volume can be approximated by the ideal gas law value (V/N = kT/p), and that
of the liquid is negligible in comparison. So equation 14.7 becomes

�p

p
= − f (if �T = 0). (14.8)

That is, the vapor pressure decreases in proportion to the decrease in solvent
concentration.

3 True, this picture may be an oversimplified one, but it works. Another simplified approach that also

works is to ignore the interactions altogether and assume constant total particle density, so that the

solvent particle density still decreases by the factor 1 − f .
4 Use ln a − ln b = ln(a/b) and assume that the temperature is held constant as the solute is added.
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This makes sense. In diffusive equilibrium, the rate of molecules going from
the liquid to the vapor phase is equal to the rate going the other way. If there
are fewer molecules in the liquid trying to escape into the vapor then there must
be correspondingly fewer molecules in the vapor trying to go back. That is, the
vapor pressure is correspondingly reduced.

B.3 Freezing and boiling points

We next look at the effect of solutes on the freezing and boiling points of liquid
solutions held at fixed pressure (�p = 0). In this case, equation 14.7 becomes

1

N

(
Svap − Sliq

)
�T = f kT .

The change in entropy �S = Svap − Sliq for N particles going between the
two phases is determined from the latent heat released upon condensation,
�S = �Q/T = L/T , so that the above expression becomes

1

N

L
T

�T = f kT, or �T = f
NkT 2

L (if �p = 0). (14.9)

In the homework problems, this equation can be used to show that the salts
dissolved in sea water raise its boiling point by about 0.6 ◦C and depress its
freezing point by about 2.0 ◦C. (L is positive for vaporization and negative for
freezing, as latent heat is added for the one and removed for the other.)

B.4 Osmosis

Many advanced organisms regulate their internal body fluids in such a way that
their cells are continually bathed in an environment that ensures optimum per-
formance. This regulation is accomplished by special membranes, such as lungs,
gills, skins, and guts, that separate their internal body fluids from the external
environment. These membranes are semi-permeable, meaning that they allow
water molecules to pass through, but not the dissolved salts.5 The diffusion of
water molecules through these membranes is called “osmosis.”

For vertebrates like ourselves, the body fluid salinity is between those of fresh
and sea water. If we drink fresh water, the water diffuses through our gut into the
more saline body fluids. But if we drink sea water then osmosis goes the other
way, causing dehydration. Swelling due to injury can be reduced by soaking the
swollen body part in salt water, thus drawing the excess fluids out through the
skin and into the saltier solution.

The underlying reason for diffusion through these semi-permeable mem-
branes is that the water on the salt side has a slightly lower chemical potential.
According to equation 14.6 the difference for typical sea water ( f = 0.02) at
normal temperatures is about (homework)

�µ = − f kT ≈ −0.0005 eV

5 This is statement is oversimplified but basically correct.
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The amount of back pressure that would be required to oppose osmotic dif-
fusion is called the osmotic pressure. It has to be sufficient to offset the 0.0005
eV that the chemical potential loses owing to the difference in concentration.
Assuming the same temperature on both sides, equation 14.1 tells us that the
required back pressure would be

�p = N

V
�µ.

Knowing that the molar volume of water is 18 cm3, we find that the osmotic
pressure is

�p ≈ 2.7 × 106 Pa ≈ 27 atm.

Pressures such as this would rupture most organic membranes. Thus most fresh
water organisms cannot survive prolonged periods in sea water, and vice versa.

Summary of Section B

When a solute is added, the chemical potential of a solvent is reduced by (equation

14.6)

�µ = kT ln(1 − f ) ≈ − f kT,

for f � 1, where f is the fraction of all particles that belong to the solute. This

change in the solvent’s chemical potential means that corresponding changes in the

temperature and/or pressure are required to bring it back into diffusive equilibrium

with another phase. For liquid-vapor equilibrium, these changes are given by

(equation 14.7)

−
[(

S

N

)
vap

−
(

S

N

)
liq

]
�T +

[(
V

N

)
vap

−
(

V

N

)
liq

]
�p = − f kT .

Such properties, whose changes depend on the concentration f of the solute but not

its particular nature, are called colligative.

Application of equation 14.7 reveals that a liquid solvent’s vapor pressure is

reduced by (equation 14.8)

�p

p
= − f,

and its freezing point is lowered and its boiling point raised by (equation 14.9)

�T = f
NkT 2

L ,

where L/N is the latent heat per particle.

Owing to the difference in chemical potential, fresh water molecules tend to

diffuse through semi-permeable membranes towards the saltier side, a process called

osmosis. The reverse pressure needed to oppose this diffusion is called the osmotic

pressure. The drop in chemical potential between fresh and sea water amounts to

about 0.0005 eV, which corresponds to an osmotic pressure of about 27 atmospheres.
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Figure 14.3 After the
reactants are mixed and
equilibrium is reached,
how do we know what the
equilibrium
concentrations of the
various interacting
chemicals will be?

C Chemical equilibrium

We now examine chemical reactions to see how the equilibrium concentrations
of the various reactants are interrelated (Figure 14.3). The reactants could be
any type of particle, such as atoms, ions, or molecules. We think of all the par-
ticles of one type as being one subsystem of the larger group. For example, the
following would be the subsystems in the dissociation of water or nitric acid
molecules:

H+ + OH− ↔ H2O, all H+, OH−, and H2O particles;

H+ + NO−
3 ↔ HNO3, all H+, NO−

3 , and HNO3 particles.

C.1 Gibbs free energy and the law of mass action

Consider a chemical reaction that has reached equilibrium under conditions of
constant temperature and pressure (so that �µi = 0, by equation 14.1). As we
learned in subsection 9F.4, the Gibbs free energy must be a minimum, and there-
fore its derivatives are zero. So to first order we have (equation 9.17)

�G =
∑

i

µi�Ni = 0 at equilibrium (T, p constant).

The changes in the numbers of particles of the various reactants, �Ni , are in
proportion to their “stoichiometric coefficients”. For example, in the burning of
hydrogen,

2H2 + O2 ↔ 2H2O,

for every two hydrogen (H2) molecules consumed, one oxygen molecule (O2) is
consumed, and two water (H2O) molecules are produced. So, in this example, the
ratios of the changes in numbers are given by

�NH2 : �NO2 : �NH2O = −2 : −1 : +2.
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The numbers −2, −1, +2 are the stoichiometric coefficients for this reaction.6

In general, if bi represents the stoichiometric coefficient for the ith reactant in
a process then the ratios of the changes in the numbers of particles for the various
reactants are given by

�N1: �N2: �N3: · · · = b1 : b2 : b3 : · · · ,

and we can write the equilibrium condition 9.17 in the more convenient form∑
i

µi bi = 0 at equilibrium (T, p constant). (14.11)

Because we are interested in particle concentrations, we use equation 14.4 to
identify the dependence of µ on ρ, combining all other factors into one messy
function ζ (T ), which does not interest us except that it depends only on T.7 Then

µ = kT [ln ρ − ln ζ (T )]. (14.12)

We insert this expression for the chemical potentials of the reactants into equation
14.11 and divide out the common factor kT to get∑

i

bi (ln ρi − ln ζi ) = 0.

Moving bi ln ζ i to the other side of the equation and using y ln x = ln x y gives∑
i

ln ρ
bi
i =

∑
i

ln ζ
bi
i .

Taking the antilogarithm of both sides gives

ρ
b1
1 ρ

b2
2 ρ

b3
3 · · · = ζ

b1
1 ζ

b2
2 ζ

b3
3 · · · .

This “law of mass action” describes how the equilibrium concentrations of the
various reactants are related through their stoichiometric coefficients. Because
the functions on the right-hand side depend only on the temperature, the law can
be written as

ρ
b1
1 ρ

b2
2 ρ

b3
3 · · · = A(T ) (law of mass action). (14.13)

The function A(T ) is called the “equilibrium constant” for the particular reaction.
In principle it can be calculated from the functions ζ (T ) for the various reactants,
but it is usually determined experimentally and is listed in tables for most common
reactions at various temperatures. Reactant concentrations may be measured in

6 If the reaction proceeds in the other direction -- from right to left -- the stoichiometric coefficients

would all reverse sign. This does not matter -- all that does matter is their relative signs.
7 In the language of equation 14.4, ζ (T ) = exp{−[u0 + f (T )]/kT }. Strictly speaking, this function

may also depend on the pressure, and we could include this dependence if we wished. For example,

the depth of the potential well, u0, depends on particle spacing. But liquids are nearly incompressible,

and the potential energies of gas molecules are minuscule, so we can safely ignore the pressure

dependence for most cases.
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whichever units are convenient, providing that the appropriate unit conversion is
made in the equilibrium constant.

C.2 Reaction rates

The law of mass action relates the concentrations of reactants after equilibrium has
been achieved. But it does not tell us the rate of the reaction nor whether it will hap-
pen in the first place. A reactant may have to surmount a potential barrier, called
the “activation energy”, in order to leave its present state for one of lower chemi-
cal potential. For example, it may have to be torn from one molecule before it can
interact with another. The required activation energy might severely retard the rate
of reaction, or it might prevent it from happening at all. Chemical intermediaries
called “catalysts” are sometimes used to provide an alternate path that reduces or
avoids the potential barrier and speeds up the reaction. Thermal motions of the
reactants usually help to speed up a reaction, so higher temperatures may also help.

Summary of Section C

When chemical reactants are in equilibrium at a given temperature and pressure, the

second law requires that the Gibbs free energy be a minimum (equation 9.17):

�G =
∑

i

µi�Ni = 0 at equilibrium (T, p constant).

The changes �Ni in the numbers of particles of the various reactants are in

proportion to their stoichiometric coefficients bi , which appear in the chemical

equation, so the above condition becomes (equation 14.11)∑
i

µi bi = 0 at equilibrium (T, p constant).

For gases and liquid solutions we are able to write the chemical potential as

(equation 14.12)

µ = kT [ln ρ − ln ζ (T )],

where ζ (T ) is a function of the temperature only. If we insert this expression for the

chemical potential of each reactant into equation 14.11, divide by kT, and take the

antilogarithm we get

ρ
b1
1 ρ

b2
2 ρ

b3
3 · · · = ζ

b1
1 ζ

b2
2 ζ

b3
3 · · ·

or (equation 14.13)

ρ
b1
1 ρ

b2
2 ρ

b3
3 · · · = A(T ),

where the function A(T ) is called the equilibrium constant. This law of mass action

shows how the equilibrium concentrations ρi of the reactants are related through

their stoichiometric coefficients bi .
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critical point

gassolid liquid

T

pFigure 14.4 Phase
diagram for the solid--
liquid--gas phases of a
typical material. The
vertical and horizontal
broken lines indicate what
would happen if we
changed the pressure at
constant temperature or
the temperature at
constant pressure,
respectively.

D Phase equilibrium

We now turn our attention from equilibrium among chemical reactants to equi-
librium between physical phases. For illustrative purposes we will often refer
to the familiar solid--liquid--gas phases, which are characterized by differ-
ences in densities and rigidity. But distinctive phases can also be identified
in other properties, such as electrical, magnetic, thermal, acoustic, and fluid
behaviors.

The diffusion of particles from one phase to another is governed by the chem-
ical potential, which depends on two intrinsic variables, usually chosen to be the
temperature and pressure (or another mechanical parameter). From equation 14.1
you can see that changes in either variable must cause changes in the chemical
potential, and such changes may make one phase favored over another.

D.1 Phase diagrams

A plot depicting the range of variables over which the various phases are stable
is called a phase diagram. At any point on the line separating two phases, their
chemical potentials are equal and they are in diffusive equilibrium. Figure 14.4
illustrates a phase diagram for the solid, liquid, and gaseous phases of a typical
material. The melting and boiling points of most materials rise with increasing
pressure, because greater pressure favors the denser phase and so more thermal
motion is required to change it.

Beyond a certain temperature and pressure, called the “critical point,” it is no
longer possible to distinguish between liquid and gas. The thermal motion of the
molecules prevents them from sticking together. We could gradually compress this
gas until it has attained the density of a liquid without it ever condensing. Critical
points for some familiar gases are listed in Table 14.1. The strong electrical
polarization of water molecules (Table 10.1) makes them particularly “sticky”
and gives them some remarkable properties, such as expansion upon freezing,
as discussed in the next section. This “stickiness” also means that more thermal
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Table 14.1. Critical points of some gases, listed in order of increasing molecular
weight. Notice that the general pattern according to which Tc, pc increase with
molecular weight is broken by helium and water, owing to their respective
exceptionally weak and exceptionally strong intermolecular interactions

Gas Tc (K) pc (105 Pa) Gas Tc (K) pc (105 Pa)

H2 33 13 O2 154 50
He 5.3 2.3 CH4 191 46
H2O 647 221 CO2 304 74
N2 126 34

energy is required to break them apart, as is reflected in higher melting and boiling
points and a higher critical temperature than other light molecules.

D.2 Clausius--Clapeyron equation

We now look more closely at how changes in pressure affect the temperature of
phase transitions. For two phases to remain in equilibrium as we change T andp,
their two chemical potentials must remain equal. That is, they must both change
by the same amount (Figure 14.5):

dµ1 = dµ2 (to remain in equilibrium).

It is convenient to multiply both sides by Avogadro’s number and use equations
9.13 or 14.1 to write the change dµ in terms of the changes in temperature and
pressure:

NAdµ = −sdT + vdp, (14.14)

where s and v are the molar entropy and molar volume, respectively. With this,
the preceding statement that the two chemical potentials must change by the same
amount becomes

−s1dT + v1dp = −s2dT + v2dp.

After collecting terms, we have

dp

dT
= s2 − s1

v2 − v1
= �s

�v

where �s and �v are the changes in molar entropy and volume as the system
goes across the equilibrium line from one phase to the other. If L is the molar
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p

phase 1

phase 2

∆p

T
∆T

Figure 14.5 A small
portion of a line
separating two phases on
a phase diagram. The two
phases are in equilibrium
along this line, so their
chemical potentials must
be equal. For them to
remain equal as we move
along this line, they must
both change by the same
amount: �µ1 = �µ2.

latent heat for this phase transition then we can write the change in molar entropy
as �s = L/T , and the above result becomes the Clausius--Clapeyron equation,

dp

dT
= L

T �v
(Clausius–Clapeyron equation). (14.15)

It tells us how changing the pressure affects the temperature of a phase transition,
or vice versa.

For most materials, the molar volume v increases as latent heat is added. So
the ratio L/T �v is positive, and increased pressure raises the temperature of
phase transitions. However, the molar volume decreases for melting ice. So the
ratio is negative and increased pressure decreases the melting point! This is why
ice is slippery. When you step on ice, the pressure reduces the melting point and
it melts (homework). That layer of water under your foot makes it slippery. This
should make sense. Increased pressure should force or favor the denser phase,
and the above result says that it does.

In the case of vaporization, the molar volume of the liquid phase is nearly
negligible compared with that of the gas, and the latter can be approximated by
the ideal gas law:

�v = vgas − vliq ≈ vgas ≈ RT

p
.

Putting this into our result 14.15 gives

dp

dT
≈ Lp

RT 2
⇒ dp

p
≈ L

R

dT

T 2
. (14.16)

This can be integrated to give (homework)

peL/RT = constant (liquid–gas), (14.17)

providing that L is reasonably constant over the range of integration. If we know
one point (T, p) where the phases are in equilibrium, this relationship will tell
us the others.



Diffusive interactions 301

p p
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thermal pressure

(Tc, pc)

combined

self attraction T > Tc
T = Tc
T < Tc
T << Tc

mixed phase

b

Figure 14.6 p--v plots for
the van der Waals model
(not to scale). (Left)
Illustration of the thermal
pressure, self attraction,
and combined terms for a
given temperature.
(Right) Plots of p versus v
for various temperatures.
When the system is hotter
than the critical
temperature Tc, the
thermal pressure
dominates over the self-
attraction for all values of
the molar volume, and so
there is no phase
transition. The reason for
the broken lines and the
term ‘‘mixed phase”in
the shaded region will
soon become apparent.

D.3 Mean field models and liquid--gas transitions

For a better understanding of phase transitions, we often employ models such
as those in Chapter 10. A system’s properties reflect the interactions among
its constituent particles, which are changing continuously owing to their thermal
motions. So most models represent a time average and are therefore called “mean
field” models.

As an example, we consider what the van der Waals model tells us about the
gas--liquid phase transition. We rearrange the van der Waals equation (10.7) to
express the pressure as a sum of two terms,

p = RT

v − b
− a

v2
(14.18)

or

pressure = thermal pressure − self-attraction.

The thermal pressure tends to keep the molecules dispersed. The self-attraction
tends to pull them together and is responsible for condensation into the liquid
phase.

As you can see, the thermal pressure dominates at extremely large and small
volumes,

p ≈ RT

v − b
for v → ∞ and v → b.

The self-attraction term a/v2 can be influential at intermediate volumes, if T is
not very large. The two terms in 14.18 are illustrated on the left-hand side of
Figure 14.6. On the right-hand side of this figure are p-v curves for several differ-
ent temperatures. You can see that above the critical temperature Tc the dip due to
the attractive a/v2 term disappears. The thermal pressure dominates over the self-
attraction everywhere, so there is no condensation (i.e., phase transition) above
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v

Figure 14.7 Plots of (a)
pressure, (b) entropy, and
(c) Helmholtz free energy
vs. molar volume from
the van der Waals model
for a given temperature.
For molar volumes
between points A and B,
the entropy is higher and
the free energy lower
along the broken line,
which represents linear
combinations of the
phases of points A and B.
Therefore, the system
would be a mixture of the
two phases between
these two points,
following the broken line
rather than the mean field
model line.

Tc. This disappearance of the dip identifies the critical point (Tc, pc) indicated on
the phase diagram of Figure 14.4.

We now use these p-v curves to study how the Helmholtz free energy F and
the entropy S vary with volume at a fixed temperature.8 From equation 9.15a
(dF = −SdT − pdV ), you can see that(

∂ F

∂V

)
T

= −p. (14.19)

That is, on a plot of the Helmholtz free energy vs. volume, the slope at any
point is the negative of the pressure. According to the van der Waals model for
T < Tc, p first decreases, then increases, and next decreases again as the volume
expands (Figure 14.7a), so there is a corresponding increase--decrease--increase
variation in the slope of the Helmholtz free energy curve (Figure 14.7c), causing
a “double hump” (at A and B). Equation 9.14 (F = E − T S) implies that changes
in entropy and Helmholtz free energy are (negatively) related, as is reflected in
the entropy curve of Figure 14.7b.

The broken lines on the curves of Figure 14.7 represent a linear combination
of the phases at points A and B, A being the liquid phase (with smaller volume)
and B the vapor phase. Because the points along the broken lines have higher
entropy and lower free energy than points on the solid line (which corresponds
to the mean field model), the system will follow the broken line. That is, in
this region the system will be partly liquid and partly vapor, the vapor content
increasing as added heat causes more liquid to evaporate and the molar volume to
increase.

To determine the point (T, p) at which a phase transition occurs, we use
equation 14.19 to write the change in Helmholtz free energy from point A to
point B at any given temperature as

�FAB = −
∫ B

A
pdV = minus the area under the p–v curve. (14.20)

But, as seen in Figure 14.7c, the change in free energy from A to B is the same
whether we follow the solid or the broken curve. Therefore, the areas (

∫
pdv)

8 Remember that the second law requires S to be a maximum and F a minimum for fixed temperature.
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Figure 14.8 (a) Plot of p
vs. v for the van der
Waals model for T<Tc. (b)
Integrating g = g0+∫

vdp from points a to e
(i.e., backwards along the
curve). The slope is the
molar volume v and
decreases as we go
along. The pressure
decreases from c to d.

under the broken and solid curves on the p-v diagram (Figure 14.7a) from A to
B must be the same. This requirement determines the values (p, v) for which the
phase transition begins and ends.

Instead of studying how the Helmholtz free energy F varies with molar volume,
as above, we could just as well study how the molar Gibbs free energy, g = NAµ,
varies with pressure. Equation 14.14, dg = −sdT + vdp, tells us that on a plot
of g vs. p for any given temperature the slope is equal to the molar volume v.
Furthermore, we can find the value of g at any pressure by integrating:

(
∂g

∂p

)
T

= v ⇒ g(p) = ga +
∫ p

a
vdp′.

For example, suppose we start at point a on the van der Waals p--v plot of Figure
14.8a and work backwards. In each region we can see what the slope of g vs. p
should be, and whether g is increasing or decreasing.

� From a to c, g is increasing (dp = +); the slope v is large and decreasing.
� From c to d, g is decreasing (dp = −); the slope v is smaller and decreasing.
� From d to e, g is increasing (dp = +); the slope v is still smaller and decreasing.

Consequently, our plot of g vs. p looks like that in Figure 14.8b.
The second-law constraint that g be minimized means that the system would

normally follow the lowest curve in Figure 14.8b, the phase transition from gas
to liquid occurring at the point bb′. Notice that there is a discontinuous change
in the slope at this point, which means that there is a discontinuous change in the
molar volume.

Taking care to eliminate disturbances and condensation or vaporization nuclei,
it is sometimes possible to create a “supercooled gas” or a “superheated liquid”.
These would correspond to the “metastable states” along the line segments bc or
b′d in Figure 14.8.
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Figure 14.9 Plot of the
molar Gibbs free energy g
as a function of T and p,
showing parts of the
minimum-g surfaces
corresponding to the
solid, liquid, and gas
phases. Because
dg = −sdT + vdp, the
slopes of these surfaces
in the T and p directions
are equal to the molar
entropy and volume,
respectively. The lines of
intersection of the
surfaces identify the
phase boundaries. The
critical point c for the
liquid--gas transition is
also indicated.

D.4 A more general treatment of phase transitions

With insights from the preceding section, we now broaden our study of the molar
Gibbs free energy (g = NAµ) and phase transitions. As Figure 14.9 illustrates,
g(T, p) is a surface in (g, T, p) space. Since both the molar entropy s and the
molar volume v are positive and since (equation 14.14)

dg = −sdT + vdp,

g must slope upward with increasing p and downward with increasing T. Fur-
thermore, since both s and v vary with temperature and pressure, so does the
slope. The minimum-g surfaces representing the solid, liquid, and gas phases
have distinctively different slopes, owing to their distinctively different molar
entropies and molar volumes. The intersections of these surfaces mark the phase
boundaries, and the extensions of the surfaces past the phase boundary identify
the supercooled or superheated phases in unstable equilibrium. A conventional
phase diagram results from the projection of these phase boundaries onto the p-T
plane, as in Figure 14.4. Figure 14.8b corresponds to a constant-T slice through
the g-surface.

The surface of minimum-g changes slope abruptly at phase boundaries. From
equation 14.14 above, you can see that the change of slope in the T direction
(∂g/∂T = −s) is due to the addition or removal of latent heat, which changes
the molar entropy s. And the change of slope in the p direction (∂g/∂p = v) is
due to the change in molar volume v. Because of the discontinuity in the first
derivatives, we often call these “first order” phase transitions.

For other phase transitions the first derivatives are continuous but the second
or higher derivatives are not. Such transitions are often called “continuous” or
“higher order”. Because the molar heat capacity is proportional to the second
derivative of g, (

∂2g

∂T 2

)
p

= −
(

∂s

∂T

)
p

= − 1

T

(
∂ Q

∂T

)
p

= −Cp

T
,

a discontinuity in the molar heat capacity could mark a higher order transition
(Figure 14.10). Notice that since only first order transitions have an abrupt change
in slope (and hence in molar entropy s), only first order transitions involve the
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Figure 14.10 Plot of the
molar heat capacity cp for
liquid helium. The
discontinuity at 2.18 K
(and atmospheric
pressure) is called the
‘‘lambda point”because
of the shape of this curve,
and it marks a higher
order transition.

transfer of latent heat. Also, only first order transitions have intersecting and
overlapping sheets, so only first order transitions can display hysteresis.9

All phase transitions involve some change in the ordering of particles, so it is
customary to generalize the treatment of phase transitions using a generic “order
parameter,” ξ . For solid--liquid or liquid--gas transitions, it might be related to the
molar volumes or the interparticle spacing. And for superconducting transitions it
might be related to the fraction of electrons in the superconducting state. It is often
defined in such a way that it is zero in the higher-temperature phase and becomes
nonzero when the transition occurs.10 As we lower a system’s temperature, the
onset of a phase transition at temperature T0 is identified by a change in the order
parameter.

For the particular case of the liquid--gas transitions discussed in the preceding
section, the three variables T, p, v can be related in the van der Waals model,
which reduces the number of independent variables to two. In a more general
study of phase transitions, we initially employ three independent variables and
then apply the second law constraint that g be minimized to reduce the number
of variables to two. The three initial variables are usually the temperature and
pressure (or an equivalent mechanical variable) and an order parameter.

To see how this works, consider the van der Waals gas of subsection D.3 the
three variables being T, p, V . According to their definitions (equations 9.14) the
Helmholtz and Gibbs free energies differ by a factor pV :

G = F + pV

So, when plotting the molar Gibbs free energy as a function of molar volume for
fixed T, p11, we have to add a factor pv to the plot of Figure 14.7c. This changes

9 “Hysteresis” means that the present state depends on its history. For example, in order to get a

supercooled gas you must begin with a gas and cool it. You can’t begin with a liquid.
10 Although ξ is a continuous variable in our mean field models, one particular value is selected when

we apply the second law requirement that the Gibbs free energy be minimized for any particular

(T, p).
11 Remember, v,T and p are independent variables until we apply the second law constraint that g be

minimized.
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the plot from sloping downward to being roughly horizontal, as illustrated in
Figure 14.11a. The molar volume is then determined by the point where the
Gibbs free energy is minimized.

g

(a)

(b)

(c)

T = T0

T > T0

T = T0

T < T0

T > T0

T = T0

T < T0

g − g0

g − g0

x

x

Figure 14.11 Plots of the
molar Gibbs free energy g
vs. molar volume v or
order parameter ξ . The
thick arrows indicating the
equilibrium points
(minimum g). (a) g as a
function of v for a van der
Waals liquid--gas transition
(obtained by adding pv to
the Helmholtz free energy
curve of Figure 14.7c). (b)
and (c) More generally, g
as a function of the order
parameter for (b) first
order and (c) higher order
transitions. The order
parameter is defined to be
zero in the higher
temperature phase. As the
temperature is lowered
past T0, the second law
requirement for the
minimization of g means
that the order parameter
undergoes a change in
value that is discontinuous
for a first order transition
(b) and continuous for a
higher order transition (c).

From our study of the van der Waals model, we might infer that if the phase
transition is due to an interplay of attractive and dispersive forces, the mean
field model’s prediction for the Gibbs free energy might be a double-humped
function of the order parameter. In this case the system would undergo a first
order transition, with a discontinuous change in the order parameter ξ as the
temperature falls below some value T0 (Figure 14.11b). If the model’s entropy
is not a double-humped function of the order parameter (i.e., it has no point
of inflection, unlike the curve in Figure 14.7b), then the system might undergo
a higher order transition, marked by the onset of a continuous change in the
order parameter as the temperature falls below some T0 (Figure 14.11c). An
important example is the condensation of particles into the lowest possible quan-
tum state, which begins at a single temperature and continues as more particles
fall into this “ground” state at still lower temperatures. More on this in a later
chapter.

The curves of Figures 14.11b, c describe what the Gibbs free energy would be
if we could change the order parameter under conditions of constant temperature
and pressure. We can’t really do that, of course, because Nature will always choose
the one point on each curve that maximizes the entropy. But if we understand
our systems well, we might be able to construct mean field models that describe
our systems under such nonequilibrium conditions. One test of these models,
then, would be to predict correctly the observed equilibrium values for the order
parameters.

Summary of Section D

Variations in temperature and pressure cause changes in the chemical potential. The

phase with the lower chemical potential is favored. Phase diagrams identify the

range of variables over which each phase is in equilibrium. Two phases are in

diffusive equilibrium along phase boundaries.

Phases are in diffusive equilibrium if their chemical potentials are equal. If two

phases remain in equilibrium after changes in the temperature and pressure, their

two chemical potentials must have changed by the same amount. This observation,

along with equation 9.13 (dµ = −sdT + vd p), relates changes in p and T along

phase boundaries to changes in s and v across phase boundaries:

�p

�T
= �s

�v

This equation can also be written as (equation 14.15)

�p

�T
= L

T �v
(Clausius–Clapeyron equation),

where L is the molar latent heat for the phase transition.
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For the specific case of liquid--gas phase transitions for which the ideal gas law is

valid, we can ignore the volume of the liquid phase in comparison with that of the

gas and integrate the above expression, assuming L is constant, to give (equation

14.17)

peL/RT = constant (liquid–gas phase equilibrium).

This tells us how various values of (T, p) for phase equilibrium are related.

The van der Waals mean field model gives us insight into the liquid--gas phase

transition. It can be written in the form (equation 14.18)

p = RT

v − b
− a

v2

or

pressure = thermal pressure − self-attraction.

At the extremes of large and small volumes, the thermal pressure dominates, but at

intermediate volumes the self-attraction may take over.

In a plot of the Helmholtz free energy versus volume, the slope is given by

(equation 14.19) (
∂ F

∂V

)
T

= −p,

so that changes in the pressure are reflected in changes in the slope of F vs. V. The

van der Waals model gives double humps in the plots of various properties as a

function of molar volume. A linear combination of the phases at the two “humps”

has lower free energy and higher entropy than the mean field model prediction for

molar volumes in this range. So the system must be a mixture of the two phases in

this region.

A system’s molar Gibbs free energy varies with temperature and pressure

according to (equation 14.14)

dg = −sdT + vdp,

so the free energy is a two-dimensional surface that slopes up with increasing p and

down with increasing T. First order phase transitions are marked by discontinuous

changes in molar entropy (with accompanying latent heat) and in molar

volume.

For a more general treatment of phase transitions, we initially consider three

independent variables, the temperature and pressure (or equivalent mechanical

variable) and an order parameter. We then require that the Gibbs free energy be

minimized to determine the order parameter’s equilibrium value. A phase transition

is identified by a change in this value of the order parameter as the temperature is

lowered below some point T0. A discontinuous change in the order parameter

identifies a first order phase transition, and the onset of a continuous change

identifies a continuous or higher order transition.
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E Binary mixtures

Now we wish to investigate systems that contain two or more different kinds
of particles, such as you would find in solutions, fluid mixtures, minerals, or
alloys. In most cases, the mixing of these components is controlled primarily by
competition between the following two opposing effects.

1 On the one hand, mixing increases the system’s entropy by offering each particle more

volume in position space, Vr (Figure 12.6 top). This would lower the chemical potential

and is the reason why particles tend to diffuse towards regions of lower concentration.

2 On the other hand, a (usually) stronger attraction between like than between unlike

particles favors separation of the components, because then the potential wells are

deeper. So thermal energy is released, affording the particles more volume in momentum

space, Vp .

It is the competition between these two contributions to the system’s entropy
that is most crucial in determining whether the mixture will be homogenous or
will separate into its components. We refer to them as the “mixing entropy” and
the “interaction entropy,” respectively.

E.1 Position space and mixing entropy

Consider two miscible fluids A and B, of equal temperatures, pressures, and
volumes, which are separated by a partition. When the partition is removed, the
volume available to each molecule doubles, which means more accessible states
and higher entropy. Each particle’s entropy increases by k ln 2 and the entropy of
the entire system increases by

�S = Nk ln 2.

As can be shown in the homework problems, we can easily generalize this to the
case where system B has a fraction f of the total number N of particles and
occupies the corresponding fraction of the total volume before the partition is
removed. System A has the remaining fraction 1 − f of particles and volume. In
this case, the increase in total entropy on removal of the partition is

�S = f Nk ln

(
1

f

)
+ (1 − f )Nk ln

(
1

1 − f

)
. (14.21)

Both terms are large and positive. We conclude that, when looking at the volume
in coordinate space alone, the entropy of the mixed state is much higher than that
when the two substances are separated. So the mixed state is favored.

In many materials, components are mixed in one phase but not in another. For
example, liquid water separates from dissolved salts when freezing or boiling.
Because entropy favors the mixed-liquid state, water’s boiling point is raised and
its freezing point is depressed when salts are dissolved in it (subsection 14B.3).
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A similar thing happens to magmas and alloys, which are homogenous mix-
tures in the molten state but tend to separate into tiny crystals of distinctly
different compositions when they freeze. Owing to the entropy of mixing the
homogenous molten state is preferred, so the freezing point is correspondingly
depressed. Solder is a familiar example of an alloy with a lowered freezing
point.

E.2 Momentum space and interaction entropy

Next, we examine volumes in momentum space. The molecules of many materials
experience virtually no shift in potential energy upon mixing and hence no shift in
kinetic energy and no change in accessible volume in momentum space. Examples
include normal gases, because their molecules are so widely separated that they
have virtually no potential energy at all. Also included in this category would
be many liquids whose molecules have similar structure, so that the interactions
between like and unlike neighboring molecules are similar. Such fluids are said
to be completely miscible.

But for many mixtures the attraction between like particles is significantly
stronger than the attraction between unlike particles, so the potential wells are
shallower when they are mixed. Shallower potential wells means that their poten-
tial energy rises upon mixing, resulting in reduced kinetic energy and therefore
a smaller accessible volume in momentum space, Vp. The loss in kinetic energy
also means that the system cools off. (One practical application is the portable
cold packs used for athletic injuries.)

So when two fluids mix, we can divide the change in entropy into two parts,12

�S = �Sm + �Si, (14.22)

where �Sm is the mixing entropy, caused by the increase in accessible volume
in position space Vr , and �Si is the interaction entropy, caused by changes in
potential and kinetic energies and hence changes in the accessible volume in
momentum space Vp. In general, upon mixing,

Vr increases ⇒ �Sm is positive,
Vp decreases ⇒ �Si is negative.

(14.23)

If the gain �Sm from the increase in position space is larger than the loss �Si

from the decrease in momentum space then the second law favors mixing. If you
understand this statement, you understand the behavior of binary systems.

Many people prefer to work with the Gibbs free energy rather than the entropy,
because G(G = Nµ) is proportional to µ, which governs diffusive interactions.

12 These are the two main contributions to the change in entropy. Some (usually) smaller contributions

include the effect of mixing on the phonon modes and on the states accessible to conduction

electrons.
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Figure 14.12 Plots of the
Gibbs free energy G of a
mixture of two
substances, A and B, as a
function of the mixing
fraction f . (a) The
contributions from the
unmixed components, G0

(broken line), from the
entropy of mixing,
−T�Sm (solid), and from
and the interaction
entropy, −T�Si (dotted
line). (b) As the
temperature increases, G
decreases and −T�Sm

becomes more dominant.
(c) The contribution
−T�Si from the
interaction entropy may
dominate for intermediate
mixing ratios, resulting in
a solubility gap. A linear
combination
(small-broken line) of the
separate phases, for
example α (mostly A) or β

(mostly B), has lower free
energy than a
homogenous mixture of
A and B (solid line).

Furthermore, when two phases are in equilibrium their chemical potentials are
equal whereas their entropies differ owing to the latent heat that must be added
or removed for transition between the two phases. According to equation 9.14c,

G = E − TS + pV .

If we assume that the total internal energy of the combined system is constant, that
it is held at constant pressure and temperature13 and that the change in volume
between mixed and unmixed states is negligible, then

�G = −T �S = −T (�Sm + �Si). (14.24)

From this it is obvious that the second law requirement of maximizing the entropy
S corresponds to minimizing the Gibbs free energy G under conditions of constant
temperature and pressure. (This was previously proven in subsection 9F.4.)

E.3 Gibbs free energy and the solubility gap

As is illustrated in Figure 14.12a, we can write the total Gibbs free energy
(G = Nµ) of a mixture in two parts: that of the unmixed components, G0, and
that due to the changes brought about by the mixing process, �G:14

G = NAµA0 + NBµB0︸ ︷︷ ︸
G0

− T �Si − T �Sm︸ ︷︷ ︸
�G

, (14.25)

We are particularly interested in �G. Since the second law demands that G be
minimized (i.e., S be maximized), the two fluids mix if the increase in T�Sm

dominates over the decrease in T�Si (i.e., if there is more gain in Vr than loss in

13 We have previously stated that there are as many independent variables as there are interactions. So

if �E, �T, �p are all zero, how can anything change? The answer is that we have two interacting

systems -- two kinds of particles, each with their own energy and chemical potential. Furthermore,

they are not in equilibrium until the mixing has stabilized.
14 Some people prefer to call the “interaction entropy” contribution the “energy of mixing,” defined

as �Em = −T �Si. This can be thought of as an “energy barrier” that opposes mixing.
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Vp). If not, they will not mix. Thus

�Sm + �Si > 0 for mixing to occur. (14.26)

For insights into which of the two terms in 14.26 dominates, we make the fol-
lowing observations.

1 At higher temperatures, materials become more miscible
The greater thermal motion at higher temperatures favors particle mixing, and
it also weakens the attractive interactions among neighboring particles by free-
ing particles from entrapment and breaking up favored molecular orientations
or aggregates. So many mixtures tend to be homogenous at higher temperatures
(where �Sm dominates) but separate into components at lower temperatures
(where they become entrapped in potential wells and �Si dominates). For exam-
ple, many alloys and magmas are homogenous mixtures in the hotter molten state
but separate out into tiny crystals of different compositions as they cool.

2 At low mixing fractions T�Sm always dominates
The interaction entropy (�Si = �Ei/T ) is linear in f for small mixing fractions.
That is, if the thermal energy lost when one particle transfers to a shallower
potential well is ε0 then that for two particles is 2ε0, etc. In contrast, the entropy
of mixing �Sm is logarithmic in the mixing fraction, so its slope is infinite in
the limit of small mixing fractions, as can be shown by taking the derivative of
equation 14.21:

d

d f
�Sm →

{
+∞ as f → 0,

−∞ as f → 1.
(14.25)

Hence, for substances where the fraction f is nearly 0 (pure material A) or 1 (pure
material B), the entropy of mixing always dominates.

In fact, since the derivative becomes nearly infinite, the addition of just a few
impurities increases the entropy immensely. One practical consequence is that it
is almost impossible to find pure substances in Nature and it is very difficult to
remove the last few impurities from a nearly pure substance. The huge increase
in entropy greatly favors the presence of at least a few impurities. (So oil and
water do mix, but only a little.)

We have encountered this before. We found that particles diffuse into regions
of higher potential energy if the decrease in concentration is sufficiently large.
Here we have produced the same result using a different tool (but a tool still based
on the second law).

3 The energy of mixing may lead to a solubility gap
Although T�Sm (where �Sm is the entropy of mixing) is positive and always
dominates for small mixing fractions, T�Si (where �Si is the interaction entropy)
may dominate at intermediate mixing fractions. This is illustrated in Figures
14.12. Because the entropy of interaction is usually negative, it causes an upward
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bulge in the Gibbs free energy (equation 14.24), especially at lower temperatures,
as illustrated in Figure 14.12b. In Figure 14.12c, the dotted line indicates that
a linear combination of phases α and β has lower Gibbs free energy than a
homogenous mixture (solid line). The gap between these two lines is called the
“solubility gap.”

The physical reason for the solubility gap is that, as mentioned earlier, the
stronger attraction between like particles may cause them to separate out in two
distinct phases, α which is mostly A andβ which is mostly B. (Neither phase can be
pure A or pure B, because the entropy of mixing always dominates for small mixing
fractions.) The stronger attraction for their own kind (i.e., the deeper potential
well) releases enough kinetic energy for the increased volume in momentum
space Vp to overcomes the loss in volume in coordinate space Vr caused by their
separation. That is, the total volume in six-dimensional phase space (hence the
entropy) increases.

4 Overall, G becomes more negative at higher temperatures
According to equation 9.14c’, G = Nν, and according to equation 9.15c, dG =
−SdT + V dp. So at any given pressure, G is negative (at least for systems with
attractive inter particle forces) and it decreases with increased temperature. This
behavior is seen in Figure 14.12.

E.4 Phase transitions in miscible fluids

We now examine the phase transitions of fluid mixtures. We will rely heavily on
graphical representations of the Gibbs free energy as a function of the mixing
fraction. You should understand the features illustrated in Figure 14.12 as well as
the following observations.

1 Attractive forces between particles, which are responsible for �Si, are generally very

strong in solids and minuscule in gases. In addition, we have seen that the influence

of �Sm increases with temperature. Consequently, the solubility gap (where T�Si

dominates T�Sm see Figure 14.12c) may be very pronounced in the solid phase but

disappear in liquids and gases (see Figure 14.12b).

2 According to equation 9.15 (dG = −SdT for constant p, N ), G decreases as tempera-

ture increases, and the rate of decrease depends on the entropy. Because Sgas > Sliq > Ssol

(entropies increase when we add latent heat), Ggas decreases faster than G liq, and G liq

decreases faster than Gsol. So, as you heat a liquid up, for example, Ggas decreases

fastest and will eventually become lower than G liq. So the liquid vaporizes.

We will now study a phase transition in a mixture of two fluids A and B.
Suppose that the boiling points for the two pure fluids are TA, TB , respectively,
with TA < TB . As in the example shown in Figure 14.13 (1), G liq < Ggas at
low temperatures, so the mixture is a liquid for all mixing fractions. But as the
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Figure 14.13 (1)--(3) As
temperature increases the
Gibbs free energy
decreases, but that of the
gas phase decreases
faster. For temperatures
between TA and TB, the
mixture could be a gas, a
liquid, or both, depending
on the mixing fraction f.
That is, a linear
combination of phases α

(a gas rich in A molecules)
and β (a liquid rich in B
molecules) could have a
lower Gibbs free energy
than either the gas or the
liquid, so the system will
be a combination of these
two phases until all is
vaporized. (Right) The
heavy arrows show the
path followed as
temperature is increased
for a certain mixing ratio
f. Horizontal slices
through the numbers 1, 2,
3 correspond to the
diagrams at the three
temperatures illustrated
on the left, and the labels
α, β correspond to the
phases in diagram (2).

temperature is increased (Figure 14.13b) Ggas decreases faster than G liq, and so
the two curves cross for temperatures in the range between TA and TB . At these
intermediate temperatures, the mixture is homogenous for small mixing ratios
(where T�Sm dominates), being a gas for f near 0 and a liquid for f near 1. For
intermediate values of f, however, a linear combination of the two phases α (a
gas that is mostly A) and β (a liquid that is mostly B) has lower free energy, so
the mixture will be a combination of these two phases α and β.

Now consider what happens if we begin in the liquid mixture phase and heat it
up, as is illustrated by the lower vertical arrow in Figure 14.13 (right). When the
temperature reaches a certain point, the onset of vaporization into the gaseous α

phase begins and the mixing ratio f bifurcates, as indicated by the curved arrows.
Because A tends to vaporize first, the vapor phase, α, is mostly A (smaller f ),
leaving more B (larger f ) in the liquidβ phase. This continues until all is vaporized
and so the mixing ratio is back to its original value; now the upper vertical arrow is
followed. Notice that although the phase transition for a pure substance happens
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at just one temperature (TA or TB), that for the mixture takes place over a range
of intermediate temperatures.

The cooling and liquefaction of gases follows the reverse path of the arrows in
Figure 14.13(right). Let’s look at air. Air is, roughly speaking, a binary mixture
of 79% N2 (boiling point TA = 79 K) and 21% O2 (boiling point TB = 95 K). As
air is cooled, liquefaction begins at a temperature somewhat below the oxygen’s
boiling point (TB). Again, entropy favors the mixed gaseous phase and therefore
depresses the temperature at which condensation begins. Also, the liquid conden-
sate is not pure oxygen, even while the mixture is still above nitrogen’s boiling
point. Nor is the remaining gaseous nitrogen pure. In both phases, entropy favors
mixing. So to purify oxygen or nitrogen requires that we repeat the process many
times, depending on the level of purity we wish to obtain.

E.5 Minerals and alloys

We now examine the liquid--solid transition as we cool a molten mixture and it
freezes. In the solid phase the particle interactions are stronger and the tem-
perature is lower. Both factors tend to increase T�Si relative to T�Sm and
thereby favor separation. For simplicity, we again deal with just two components,
which could be different elements or materials with different chemical composi-
tions. Many of these processes are similar to the liquid--gas transition described
in the preceding section, but here we face a larger solubility gap in the solid
phase.

If we begin in the homogenous molten phase and lower the temperature then
both G liq and Gsol rise, but G liq rises faster.15 When G liq becomes higher than
Gsol, the material begins to solidify, the solid phase being the state of lowest
G. This process can produce many different results, depending on the mixing
fraction f (Figure 14.14), as we now explore.

As the melt is solidifying

� The entropy of mixing favors the more homogenous molten phase. So freezing begins

at a temperature below that of either pure substance.
� For small mixing fractions f (i.e., the mixture is mostly A), the cooling system will go

through a stage where it is partly solid (phase αsol, mostly A and very depleted in B) and

partly liquid (phase βliq, still mostly A, but enriched in B). But the composition of both

these phases changes over time, relatively more B freezing out later.
� The corresponding process happens for large mixing fractions f (i.e., the mixture is

mostly B). The system as it cools will go through a stage where it is partly solid (phase

βsol, mostly B and very depleted in A) and partly liquid (phase αliq, still mostly B, but

15 Again, dG = −SdT , with Sliq > Ssol. As we lower the temperature dT is negative so dG is positive.
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Figure 14.14 (1)--(3) Plots
of Gibbs free energy vs.
mixing fraction f at three
temperatures for the solid
and liquid phases of a
binary mixture. The stable
phase or mixture of
phases is the one with the
lowest G. Note that G
decreases with increasing
temperature, Gliq

decreasing faster than
Gsol. (Right) Phase
diagram for the binary
mixture, indicating the
stable phase as a function
of temperature and
mixing fraction. A
horizontal slice through
each of the positions 1, 2,
3 gives the stable phase
(minimum G) of the
corresponding diagrams
on the left. Following any
vertical line downwards
shows what happens as
the melt freezes for that
particular value of the
mixing fraction.

enriched in A). Again, the compositions change over time, relatively more A freezing

out later.

The final outcome, after the material is completely solidified:

� For very small mixing fraction f ( f ≈ 0), the final solid will be phase αsol, i.e., mostly

A with a little B impurity mixed in.
� For very large mixing fraction ( f ≈ 1), the final solid will be phase βsol, i.e., mostly B

with a little A impurity mixed in.
� For intermediate mixing fractions, the final solid will be a heterogeneous mixture of

phases αsol and βsol (hence tiny crystals in igneous rocks).
� Even after solidification, the microscopic crystalline structure may slowly change with

decreasing temperature, as the influence of the entropy of mixing term T�Sm continues

to decrease in importance and heterogeneous mixtures αsol+βsol become favored over

more homogenous mixtures, e.g., αsol with B impurity.
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Summary of Section E

The mixing of two substances A and B causes changes in the volume accessible to

the particles in both position and momentum space, and these changes in entropy are

reflected in the system’s properties. The changes in the Gibbs free energy can be

written in the form (equation 14.24)

�G = −T�Sm−T�Si,

where the entropy of mixing �Sm is positive and reflects the additional accessible

volume in position space and the interaction entropy �Si is negative and reflects

changes in momentum space due to particle interactions. The second law requires

that the Gibbs free energy be minimized, so the two substances mix only if �G is

negative, i.e., if T�Sm dominates T�Si. This does indeed happen at high

temperatures and at small mixing fractions. But the T�Si term often dominates at

lower temperatures, especially in solids where particle interactions are stronger.

Where this happens, there is a solubility gap. That is, the two materials tend to

separate out into a heterogeneous mixture of two phases: α, which is mostly A, and

β, which is mostly B. The separated phases will never be completely pure, because

the entropy of mixing dominates at low mixing fractions.

Owing to the entropy of mixing, the boiling and freezing points of mixtures

change to favor a more homogeneously mixed phase. For example, in the cooling

and liquefaction of mixed gases, the gas with the higher boiling point begins to

condense first, but at a temperature below its normal boiling point. And the

condensate is not pure, again because the entropy of mixing favors mixing in the

liquid as well. As condensation occurs, the liquid phase contains mostly the

substance with the higher boiling point, and the gas contains mostly the substance

with the lower boiling point. But the composition of both phases changes as more

and more of the mixture condenses.

A similar thing happens in a liquid--solid transition: the liquid state is more

homogeneously mixed, and the solid phase may have a sizable solubility gap. The

entropy of mixing favors the homogenous liquid phase, so the freezing point is

depressed by an amount that depends on the mixing fraction. For very small mixing

fractions, the frozen solid will be either α phase (mostly A with a little B impurity)

or β phase (mostly B with a little A impurity). For intermediate mixing fractions, the

solubility gap will ensure that the final solid is a heterogeneous mixture of the α and

β phases.

Problems

Section A
1. For water vapor, u0 = 0. Each molecule has six degrees of freedom in both

the vapor and liquid phases. The latent heat of vaporization for water is
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40 700 J/mole and as it vaporizes, it expands. The average work done per
molecule in this expansion is pυ = kT . The specific heat of liquid water is
75.3 J/(mole K). The molar mass of water is 18 g/mole. Use this information
to calculate the average energy of a water molecule (in eV) for (a) water
vapor at 100 ◦C, (b) liquid water at 100 ◦C, (c) liquid water at 0 ◦C, (d) What
is the potential energy reference level u0 (in eV) for liquid water at 100 ◦C?
(e) What is u0 for liquid water at 0 ◦C? (f) In raising the temperature of liquid
water, how much of the heat goes into thermal energy, and how much into
raising u0?

2. You are invited to answer the question in the caption to Figure 14.1.

3. At constant pressure, chemical potential µ decreases with increasing temper-
ature (equation 14.1). Near 0 ◦C, which chemical potential falls faster with
increasing temperature, µwater or µice? How do you know?

4. Rearrange the terms of the first law so that −µdN is on one side of the
equation and all the other terms on the other. Now show that −µ/T is a
measure of the increase in entropy when a single particle enters a system
with no gain in either energy or volume.

5. In a problem at the end of Chapter 13 you showed that the entropy of a system
increases when a single particle is added, even when there is no increase in
either thermal energy or volume. Now demonstrate this with a few examples
of very small systems with thermal energy that comes in single units. The
different states are identified by the different ways in which the units of energy
are distributed among the particles. In each case, calculate the number of such
states �1 for the given system, the number of states �2 if a single energyless
particle is added to it, and the factor �2/�1 by which the number of states
has increased. The system are as follows:
(a) two particles and one unit of energy;
(b) two particles and two units of energy;
(c) three particles and one unit of energy;
(d) three particles and two units of energy;
(e) three particles and three units of energy;
(f) Does the number of states increase with one added energyless particle

in each case?
(g) Consider the factor by which the number of states increases when one

energyless particle is added. Does this factor increase when the energy
per particle in the original system increases?

6. We are going to improve on the above problem by showing that the entropy of a
system increases as the energy and the number of particles increase. Suppose
that we distribute n units of energy among the N particles of a system. There
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are (N+n−1)!
n!(N−1)! different ways in which this can be done. According to Stirling’s

approximation, m! ≈ (m/e)m . Show that:
(a) (N+n−1)!

n!(N−1)! ≈ (N+n)N+n

nn N N for large N;
(b) the number of states is an increasing function of the number of particles,

N;
(c) the number of states is an increasing function of the total energy, n.

7. For an ideal gas, pV = NkT , E = (Nν/2)kT , and the number of accessi-
ble states is given by � = ωN

c , where ωc = constant × (V/N )(E/Nν)ν/2.
Choosing E, V, N to be the independent variables, and writing

� ln � = ∂ ln �

∂ E
�E + ∂ ln �

∂V
�V + ∂ ln �

∂ N�N
,

work out these partial derivatives to show that T�S = �E + p�V − µ�N .
What is the expression for µ that you get?

8. Show that (a) equation 14.4 follows from 14.2 and 14.3; (b) equation 14.5′′

follows from 14.2 and 14.5.

9. Estimateωc for water molecules in liquid water at 17 ◦C, given that m = 3.0 ×
10−26 kg. Remember that the number of states is Vr Vp/h3. For an estimate
of the accessible volume in momentum space, assume that the maximum
magnitude of the momentum for any molecule is roughly equal to the root
mean square value; most accessible states reside within a sphere of that
radius in momentum space. Assume that any one molecule can go anywhere
within the volume V occupied by the liquid, and don’t forget to correct for
the number of identical particles within that volume.

10. Consider the ideal monatomic gas argon, whose atomic mass is 6.68 ×
10−26 kg at standard temperature and pressure (0 ◦C, 1 atm).
(a) Estimate ωc for the particles of this gas (see the previous problem).
(b) What is a typical value for the average entropy per particle in this gas?
(c) From your answer to the above, estimate the chemical potential (equation

14.2).

11. Suppose that we transfer 2000 particles from system A at 270 K to system B
at 800 K, both of which are at atmospheric pressure (1.013 × 105 Pa). The
volume required by each particle in either system is 10−29 m3. In system A
each particle has νA = 6, u0,A = −0.10 eV, and µA = −0.20 eV. In system B
each particle has νB = 3, u0,B = −0.14 eV, and µB = −0.36 eV. Calculate
the following quantities in eV:
(a) �E, �Q, �W , µ�N for system A,
(b) �E, �Q, �W , µ�N for system B (hint: energy and particles are con-

served, so your two �E’s and �N’s must be equal and opposite, also, the
transferred particles are in equilibrium in system A but not upon entry
into system B),
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(c) the amount of thermal energy released into system B by these entering
particles,

(d) the number of states per particle, ωc, in each system.

12. Consider a system initially at 17 ◦C whose particles have six degrees of
freedom apiece and for which u0 = −0.4 eV. Suppose that the particles find
a second configuration, in which the potential energy reference level u0 shifts
downward to −0.5 eV. By what factor do you expect the number of states per
particle, ωc, to increase? Would the second law favor the first configuration
or the second?

13. The depth of the potential well for a water molecule in liquid water at 17 ◦C
is about −0.43 eV and in the gaseous phase is 0 eV. If the density of states
ρω in the vapor phase is about 80 times greater than that in the liquid phase,
roughly what would be the absolute humidity (in grams of water vapor per
cubic meter of air) for saturated air at 17 ◦C?

14. Assuming that the temperature of air is constant at 0 ◦C at all altitudes, the
density of air should decrease by a factor 1/2 for every increase of z kilometers
in altitude. Find z. (The mass of an air molecule is about 4.9 × 10−26 kg.)

15. The density and atomic mass numbers for various substances are listed below
in the following table.

Substance Density (103 kg/m3) Molecular weight

aluminum 2.7 27
mercury 13.6 200
ethyl alcohol 0.79 46
water 1.00 18

For each of these, calculate. (a) the volume per particle, V/N , (b) the value of
pυ in electron volts for atmospheric pressure, (c) the pressure in atmospheres
at which pυ would be equal to kT at 295 K.

16. Two solutions are in diffusive equilibrium at 37 ◦C and atmospheric pressure.
A certain salt’s concentration is 1000 times greater in solution A than in
solution B. The density of single-particle states, ρω, is the same for both
solutions, as is the number of degrees of freedom per particle.
(a) In which solution is the potential well u0 deeper?
(b) How much deeper?

17. Water molecules have six degrees of freedom apiece in all phases. At 0 ◦C,
u0, water = −0.443 eV, the latent heat of fusion for ice is 6006 J/mole, and ice
is 0.917 times as dense as liquid water. Using this information, calculate
(a) the potential energy reference level for the water molecule in ice, u0, ice,
(b) the ratio ρω,water/ρω,ice for the water molecules in the two phases.
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18. Consider the equilibrium between water vapor and ice at −10 ◦C. The water
molecules have six degrees of freedom in both the solid and gaseous phases,
and the density of ice is 917 kg/m3. The depth of the potential well for
the water molecule in ice is −0.505 eV. The ratio ρω,vapor/ρω ice is about
40 000. With this information, calculate the density of water vapor in air
when in equilibrium with ice at −10 ◦C. (Hint: Use equation 14.5, because
you cannot ignore the pυ term for the vapor.)

19. The molecules of a certain salt have six degrees of freedom in the salt crystals
and three degrees of freedom when dissolved in water. The density of the
crystalline salt is 5 g/cm3, and that of salt ions in the saturated salt solution
at 17 ◦C is 0.03 g/cm3. The density of single-particle quantum states is 1000
times greater in the dissolved state than in the crystals. What is the difference
between the depths of the potential wells that the salt molecule experiences
in the crystalline form and in solution, u0,solution − u0,crystal?

Section B
20. Using equation 14.6, estimate how much lower sea water’s chemical potential

is than that of fresh water at 17 ◦C.

21. At 10 ◦C, when water vapor is in diffusive equilibrium with liquid fresh
water, the air above the liquid water is about 2% water vapor by number
of molecules. What is the water’s vapor pressure? By how much would it
decrease if the water vapor were in diffusive equilibrium with sea water
rather than fresh water?

22. Use equation 14.9 to estimate by how much sea water’s freezing point is
depressed, and its boiling point raised, relative to fresh water. (The latent
heats for water are 40 700 J/mole for vaporization and --6000 J/mole for
freezing.)

23. Imagine an organism that lives in a hydrothermal vent where the temperature
is 80 ◦C and the salinity is 4% by number of ions. If the organism’s body
fluids have a salinity of 1%, what is the osmotic pressure across membranes
separating this organism’s body fluids from its environment?

24. Use the fact that a mole of water has a mass of 18 grams, and therefore
occupies a volume 18 cm3, to calculate the volume per water molecule, υ.
Use this to calculate the osmotic pressure corresponding to a decrease in
0.001 eV in chemical potential experienced by water as it goes from pure
water to a salt solution. How far beneath the surface of the ocean would you
have to be for the pressure to be this large? (Pressure increases with depth at
a rate of 1 atm per 10 meters of depth.)

25. For water at room temperature, the entropy and volume per molecule are very
roughly 3 × 10−22 J/K and 3 × 10−29 m3, respectively.
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(a) Using this and equation 14.1, estimate roughly the increase in pressure
that would be needed to counteract a difference of 0.01 ◦C in temperature
across a water-permeable membrane.

(b) Without this pressure, would water diffuse from the hot toward the cold
or vice versa?

(c) If the temperature gradient were such that the temperature dropped by
0.01 ◦C across a distance of one or two molecular widths, by how many
degrees would it change over a distance of 1 cm?

Section C
26. In the minimization of the Gibbs free energy, G = ∑

i µi Ni , we wrote �G =∑
i µi�Ni = 0. What has happened to the �µi Ni term?

27. Suppose that the chemical potential of particle type is A is −1.3 eV, that of
particle type is −0.4 eV, and that of particle type C is −1.5 eV. Particles of
A and B could possibly combine to form particles of C. Would they? Why,
or why not?

28. Write out equation 14.11 explicitly for the reaction of H2SO4 and NaOH to
form H2O and Na2SO4, with the correct stoichiometric coefficients.

29. Particles of types A, B, and C could interact to form particles of types D
and E according to the chemical equation 3A + B + 4C ↔ 2D + 3E . If
the respective chemical potentials are µA = −0.4 eV, µB = −0.1 eV, µC =
+0.2 eV, µD = −0.1 eV, µE = −0.2 eV, which way would this reaction
tend to go (to the right or to the left)? Why?

30. A chemical reaction between reactant types A, B, and C is proceeding accord-
ing to 3A + B → 2C .
(a) From this fact, can you write down a relationship between the chemical

potentials µA, µB , and µC ?
(b) Chemical potential increases as concentration increases. Explain how

this fact could stop the above chemical reaction from continuing even
before the particles of types A or B are all used up.

31. The entropy of water at 25 ◦C and one atmosphere of pressure is 188.8
joules/(mole K). Given that the molecular weight of water is 18 and that its
specific heat is 4.186 J(g K), find (a) the entropy of water at 27 ◦C (hint: use
�Q = T�S), (b) the entropy per molecule for water at 25 ◦C and at 27 ◦C.
(c) When you change the temperature of water by 2 ◦C from 25 to 27 ◦C at
atmospheric pressure, by how much does the chemical potential change?

32. At 25 ◦C and one atmosphere of pressure, a mole of water has entropy 188.8
J/(mole K) and volume 18 cm3. If you raise the temperature by 1 ◦C, by how
much would you have to increase the pressure in order to keep the chemical
potential of a water molecule unchanged?
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33. (a) The equilibrium constant for the dissociation of water, H2O → H+

+ OH−, is 10−15.745 mole/l at 24 ◦C. What is the concentration of the
H+ ions?

(b) The negative exponent of the H+ ion concentration (in moles per liter)
is called the pH value. For example, if ρ(H+) = 10−2 moles per liter,
the pH value is +2. What is the pH value of pure water at 24 ◦C?

(c) The equilibrium constant for the dissociation of water at 60 ◦C is
10−14.762 moles per liter. What is the pH value of pure water at this
temperature?

34. A chemical reaction 3A + B + 2C → D + 2E is conducted at stan-
dard temperature and pressure for which the equilibrium constant is
103 (mole/liter)−3.
(a) If in equilibrium the concentrations in moles per liter are ρA = 0.2, ρB =

0.5, ρC = 0.1, and ρD = 0.2, what is the concentration of the reactant
E?

(b) Suppose that you now remove some reactant E. The reaction then pro-
ceeds to a new equilibrium, the new concentration of A being 0.17 moles
per liter. What are the new concentrations of B, C, and D? By how much
has the concentration of E decreased?

35. In Chapter 6 (Table 6.2) we showed that the corrected number of states per
particle for a monatomic ideal gas is ωc = e5/2(2πmkT )3/2/h3ρ.
(a) Show that for a monatomic ideal gas, e−µ/kT = [(2πmkT )3/2/

h3ρ]e−u0/kT .

(b) What would be the function ζ (T ) in equation 14.12?
(c) For the ionization of hydrogen atoms in the photosphere of the Sun(

H ↔ H+ + e−), show that the equilibrium constant is given by

[ρH+ ][ρe− ]

[ρH ]
= (2πmekT )3/2

h3
e−I/kT ,

where [ρi ] denotes the equilibrium concentration of species i and I is
the ionization potential (13.6 eV).

(d) Show that the concentration of H+ ions is proportional to e−I/2kT .

Section D
36. Water’s latent heat of vaporization is 40 700 J/mole. Roughly how much

energy (in eV per molecule) separates the band of the liquid-phase states
from the free continuum for water molecules? (Don’t forget that the latent
heat includes the energy used per molecule for expansion into the gaseous
phase, pυ ≈ kT .)

37. Make a qualitative sketch of the phase diagram of a substance for which the
solid and liquid phases are equally dense.
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38. Water and methane molecules both have about the same mass, yet water has
a much higher boiling point at any given pressure. Why do you suppose this
is?

39. The mutual attraction between water molecules is much greater than that
between ammonia molecules. For which material do you expect the critical
temperature to be higher, and why?

40. The molar entropy of ice at 0 ◦C is 160.2 J/(mole K). Using Lvaporization =
40680 J/mole, Lmelting = 6006J/mole, find the molar entropy of water (a) as
a liquid at 0 ◦C, (b) as a liquid at 100 ◦C, (c) as a vapor at 100 ◦C, (d) in ice
melt at 0 ◦C that is 40% ice and 60% liquid.

41. Given that water boils at 100 ◦C at atmospheric pressure and that its latent
heat is 40 680 J/mole, under roughly what pressure will water boil at: 140 ◦C,
(b) 200 ◦C, (c) 300 ◦C, (d) 40 ◦C, (e) 0 ◦C? (f) The exact answer to part
(e) is 0.00603 atm. What is the % error in your answer to part (e), and
what approximation(s) went into the derivation of equation 14.17 that might
account for this error?

42. What approximation went into the derivation of equation 14.17 that would
make it especially inaccurate near the critical point?

43. Under atmospheric pressure iron melts at 1530 ◦C, and the latent heat of
fusion is 1.49 × 104 J/mole. At the melting point, the density of the solid
phase is 7.80 g/cm3 and that of the liquid phase is 7.06 g/cm3. The atomic
mass for iron is 55.8.
(a) What are the molar volumes (in m3) for iron in the solid and liquid

phases at the melting point?
(b) What is the change in molar volume of the iron when the solid is melted?
(c) To force iron to melt at a higher temperature, would the pressure on it

have to increase or decrease?
(d) At what pressure would the melting point be 1600 ◦C?

44. Under atmospheric pressure, water freezes at 0 ◦C. The latent heat of fusion
is 6.01 × 103 J/mole. At the melting point, the density of ice is 0.917 g/cm3,
and that of liquid water is 0.9999 g/cm3. The molecular weight of water is
18.
(a) What are the molar volumes (in m3) for water in the solid and liquid

phases at the melting point?
(b) What is the change in molar volume of the water when the solid is

melted?
(c) To force water to melt at a lower temperature, would the pressure on it

have to increase or decrease?
(d) At what pressure would the melting point be −30 ◦C?
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45. If a 700 N man stands on ice skates for which the area of contact with the
ice is 10 mm2, by how many degrees is the melting point of the ice lowered?
(The latent heat of fusion is 6.01 × 103 J/mole. At the melting point, the
density of ice is 0.917 g/cm3, and that of liquid water is 0.9999g/cm3. The
molecular weight of water is 18.)

46. Suppose that the surface of some ice is at −1 ◦C, and you want to know
how much pressure you must apply to melt it. The latent heat of fusion is
6.01 × 103 J/mole. At the melting point, the density of ice is 0.917 g/cm3

and that of liquid water is 0.9999 g/cm3. The molecular weight of water is 18.
(a) How much pressure will you have to apply to melt it?
(b) If you weigh 700 N, the area of contact between your shoes and the ice

must be less than what?
(c) With soft-soled shoes on very flat ice, will your pressure be sufficient to

melt the ice?
(d) If you are wearing hard-soled shoes, and the ice is bumpy, so that the

area of contact between your shoes and the ice is only 20 mm2 (the tops
of the bumps), will you melt the ice?

(e) On flat ice, you slide much farther with ice skates than with shoes. Why?

47. For a certain liquid--gas phase transition, the molar latent heat changes with
temperature according to L = A + BT , where A and B are constants. What
equation of the form f (p, T ) = constant describes the line separating the
two phases on a phase diagram? Assume that the gas is an ideal gas and that
the molar volume of the liquid phase is negligible in comparison with that
of the gas.

48. In Figure 14.6, you can see that for the T = Tc curve, and only for that curve,
there is a point of inflection where both the first and second derivatives are
zero.
(a) Use this information to find Tc, pc in terms of the van der Waals constants

a, b.
(b) With this result and the data of Table 10.1, estimate the values Tc, pc for

water and methane. (The true values are 647 K, 221 atm and 191 K, 46
atm, respectively.)

49. Answer the following by going back to fundamentals regarding accessible
volumes in position and momentum space. Figure 14.7b is an isothermal
curve, and it shows that as volume increases, entropy increases. Why? If
volume increases during an adiabatic expansion, why doesn’t the entropy
increase?

50. In the isothermal plot of g vs. p of Figure 14.8b there is a discontinuous
change in the slope of the line of minimum g at the point bb′. Why does this
imply a sudden change in the volume?
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Section E
51. Initially systems A and B have different types of particle and are separated by

a removable partition. System A initially has a fraction f of the total volume
and of the total number of particles. The partition is removed and the particles
mix.
(a) Show that the increase in the total entropy due to changes in the accessible

volume is given by equation 14.21.
(b) Show that −T�Sm is concave upwards everywhere.

52. Solder is a mixture of tin and lead. The melting point of tin is 232 ◦C and
that of lead is 327 ◦C. The melting point for solder (depending on the mixing
fractions) generally lies in the range 180 ◦C to 200 ◦C. Why is the melting
point of the mixture lower than that of either ingredient?

53. When a certain two miscible fluids mix their temperature rises. Why is this?

54. When two systems mix at 290 K, they absorb 10 000 J of heat from their
surroundings. What is the change in interaction entropy of the system upon
mixing?

55. When plotting the entropy of mixing, �Sm, vs. the mixing fraction f, the
slope becomes infinite in the limits f → 0 and f → 1 (equation 14.25).
Prove this by taking the derivative with respect to the mixing fraction (d/df)
of the entropy of mixing (see equation 14.21).

56. Imagine that particles interact in pairs. If the interaction energy of two par-
ticles is 2ε, then half of that (ε) can be associated with each particle. Let
εA, εB, εX represent the interaction energy per particle for pairs of As, Bs,
and unlike particles, respectively. (For attractive interactions, these energies
are negative.) There are N f particles of type B and N (1 − f ) of type A.
(a) Show that the change in potential energy (equal and opposite to the

change in thermal energy) is given by

�U = Nf (1 − f )(2εX − εA − εB).

(b) In the common case where attraction between like particles is stronger
than that between unlike particles, 2εX − εA − εB > 0, so the answer
to part (a) is positive. Potential energy rises and thermal energy falls,
and the answer to (a) represents energy that must be added to the system
to keep its temperature constant. As can be seen in Figure 14.12, �G =
−T �Sm − T �Si must be concave upward everywhere to avoid a

solubility gap. What restriction does this place on the factor 2εX − εA −
εB for any value of f ?

(c) Suppose that εA = εB = −0.25 eV and εX = −0.20 eV. At what
temperature would A and B be miscible for all f ?
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57. Referring to Figure 14.14, consider the cooling and solidification of a molten
magma with a mixing fraction of 0.25 (the process is represented by a vertical
line at f = 0.25). See whether you can explain the various phases through
which the cooling magma goes in the phase diagram (going downward along
your line) by what you see on the corresponding plots of Gibbs free energy
in the diagrams on the left.
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Early in this book we used statistics to study the behavior of small systems. Expan-
sion of this statistical approach enabled us to develop more powerful methods for
larger systems, as we have been doing in the past 11 chapters. Now we return our
attention to small systems, this time armed with our arsenal of statistical tools.

A myriad of small systems is begging to be studied, and the particular tools we
use depend on the type of information that we wish to obtain. Often we must be
creative in developing an appropriate approach to the problem at hand. But some
statistical tools can be used in broad classes of studies and are therefore partic-
ularly valuable. The rest of this book is devoted to developing and illustrating
some of the more popular standard tools.

A The ensembles

If we flip two coins, the probabilities for the possible heads--tails outcomes would
be

Phh = 1/4, Pht or th = 1/2, Ptt = 1/4.

329
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If we had a very large number of identically prepared systems, each consisting
of two flipped coins, then we would expect 1/4 of them to have two heads, 1/2 of
them to have one head and one tail, and 1/4 to have two tails, because these are
the respective probabilities. A very large number of identically prepared systems
(real or imagined) is called an “ensemble.”

If a property x has the value xi when the system is in state i, and the probability
that it is in this state is Pi , then the mean value of the property x is given by
(Chapter 2)

x =
∑

i

Pi xi .

Because Pi is also the fraction of the members of an ensemble that would be in
this state, this definition of mean value is also sometimes called the “ensemble
average.”

We classify ensembles according to how their members are interacting with
outside systems. If there is no interaction at all, it is called a “microcanoni-
cal ensemble”. In Chapter 7 we considered a completely isolated system A0

that consisted of two interacting subsystems A1 and A2, and we calculated the
probabilities Pi for the various possible energy distributions between them. If
instead of one such isolated system A0 we considered a huge number, all identi-
cally prepared, it would be a “microcanonical ensemble.” The probability Pi for
any particular distribution of energies between the two subsystems would then
be reflected in the fraction of the ensemble’s members that had this particular
energy distribution.

In a “canonical ensemble” the members are interacting thermally and/or
mechanically with an outside system. An example is the oxygen molecules in
our atmosphere. The probability for any molecule to be in a certain quantum
state is reflected in the fraction of all oxygen molecules that are in that state.
Because each molecule is interacting thermally and mechanically, but not dif-
fusively (N = one molecule for each member) with the atmosphere, altogether
they form a canonical ensemble.

In addition to possible thermal and mechanical interactions, the members of
a “grand canonical ensemble” interact diffusively with their environment. An
example would be a large number of identical quantum states, each of which has
particles entering and leaving it (see below). Another example would be a large
number of identical ice crystals interacting diffusively with the moisture in the
air.

B Probability that a system is in a certain state

The most powerful tools of thermodynamics are based on the statistics of large
numbers. How can we use these tools to study the behaviors of a small component
of a system, such as a single molecule or a single quantum state? The task is



Probabilities and microscopic behaviors 331

A1

R

(∆E, ∆V, ∆N)

Figure 15.1 A small system, A1, is interacting thermally, mechanically, and
diffusively with a huge reservoir, R. To move into state s the small system must take
energy, volume, and particles �E, �V, �N from the reservoir. What then is the
probability that it is in this state?

accomplished through a clever trick. If the whole system is isolated, then any
gain in the energy, volume, or particles possessed by the small component is at
the expense of the rest of the system. Because the “rest of the system” is very
large, we can apply the powerful statistical tools to this “rest of the system” in
order to infer the behavior of the small component.

We begin by considering a tiny system A1 interacting with a large reservoir R,
as in Figure 15.1. The number of states for the combined system is the product of
the number of states for the two subsystems (Sections 2B or 6D). The number of
states for the reservoir, �R, can be written in terms of its entropy SR: �R = eSR/k

(equation 7.11). So

�0 = �1�R −→ �0 = �1eSR/k . (15.1)

Now suppose that the small system is in one particular state (�1 = 1),
which has taken energy �E , volume �V , and particles �N from the reser-
voir. This reduces the entropy of the reservoir by an amount given by the first law
(equation 8.6).

SR = SR0 − �E + p�V − µ�N

T
,

where SR0 was the original entropy of the reservoir before it lost �E, �V, �N to
the small system. If we insert this and �1 = 1 (one specified state) into equation
15.1, we have

�0 = 1 × exp

(
SR0

k
− �E + p�V − µ�N

kT

)
.

Finally, we recall that the probability for any particular configuration (i.e.,
any distribution of energy, volume, or particles) is proportional to the num-
ber of states �0 corresponding to that configuration (using the fundamental
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Figure 15.2 Figurative illustration of the difference between classical (Boltzmann)
and quantum statistics. In classical statistics, attention is typically focused on the
individual small system or particle, which could occupy any of several different
states. In quantum statistics, attention is focused on the individual quantum state,
which could be occupied by various numbers of particles.

postulate, Section 6B). Incorporating the factor eSR0/k into the constant of pro-
portionality, we have the following very important result.

The probability that a system is in a state s

When a small system is interacting with a reservoir of temperature T, the probability

that it is in a state s which takes energy, volume, and particles �E, �V, �N from

the reservoir is given by

Ps = C exp

(
−�E + p�V − µ�N

kT

)
, (15.2)

where C is a constant of proportionality determined by the requirement that the sum

over all possible configurations must give a total probability of 1,∑
s

Ps = 1. (15.2′)

Notice that we have managed to write the probability that the small system is in a
certain state purely in terms of its influence on the reservoir R. States that cause
a greater reduction in the reservoir’s entropy are less probable.

Since the factor 1/kT is always present in the exponent, it is customary and
convenient to use the symbol β for this factor:

β ≡ 1

kT
. (15.3)

C Two approaches

The result 15.2 is often applied in one of two different ways that correspond to
two different ways of viewing the microscopic system (Figure 15.2):
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Figure 15.3 Classical statistics: a plot of the probability that a small system is in a
state s with energy εs , when interacting with a reservoir. The relative probabilities
are indicated by the heights of the lines. Probabilities are smaller for states of higher
energies, because the removal of energy from the reservoir reduces its entropy.

1 as a particle or other small system that can occupy any of several different states;

2 as a quantum state that could be occupied by various numbers of particles.

The first approach is often referred to as “Boltzmann” or “classical statistics” and
the second as “quantum statistics.”

As we will soon learn, the approach that we use depends on the nature of the
problem. The classical approach is the most convenient when either:

� the small systems are distinguishable, so that we can identify the one of interest, or
� the probability that two or more small systems might attempt to occupy the same quantum

state is very small.

The quantum approach is most convenient when neither of these applies, that is,
when the small systems are identical and the probability that two or more might
attempt to occupy the same state cannot be ignored.

C.1 Classical statistics

In the classical approach the small system is identified. For example, it could be a
certain set of genes in a chromosome or a single nitrogen molecule in a room full
of air. It has a fixed number of particles and exchanges none with the reservoir.1

So �N = 0, and the probability of finding it in state s is (Figure 15.3)

Ps = Ce−β(εs+pυs ) (classical statistics) (15.4)

1 So what kind of ensemble would it be if you had a large number of these small systems?
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where εs and υs are the energy and volume (previously written as �E and �V )
that the small system has taken from the reservoir. States that require more energy
or volume are correspondingly less probable.

The energy and volume that are taken from the reservoir are customar-
ily measured relative to the ground state. But they could be measured rela-
tive to any level ε0,υ0 by making an appropriate adjustment in the constant of
proportionality:

Ps = Ce−β[(εs−ε0)+p(υs−υ0)] = Ceβ(ε0+pυ0)︸ ︷︷ ︸
C ′

e−β(εs+pυs ).

As can be shown in the homework problems, the pυs term is usually negligible
in comparison with εs . Consequently, the probability that a small system is in a
state s is normally written as

Ps = Ce−βεs (classical statistics, pυs << εs). (15.5)

C.2 Quantum statistics

In the second approach, we consider the “small system” to be a single quan-
tum state. Its volume is fixed,2 but it may contain various numbers of particles.
So although it exchanges no volume with the reservoir, it may take particles
(�V = 0 but �N = 0).3 Consequently, the probability for it to be in a certain
configuration is, from equation 15.2,

P = Ce−β(�E−µ�N ).

If the energy of a particle in this quantum state is ε then the probability that there
are n particles in the state is (with �N = n and �E = nε)

Pn = Ce−nβ(ε−µ) (quantum statistics). (15.6)

In both the classical and the quantum approaches, the constant of proportional-
ity C is determined by the condition that the system must certainly have one of the
possible configurations. For classical statistics, the small system must certainly
be in one of the states, and for quantum statistics, the state must certainly contain
some number of particles. Thus we have

C
∑

s

e−βεs = 1

⇒ C = 1∑
s e−βεs

(classical statistics), (15.7)

2 Remember, a quantum state identifies a certain volume in phase space, which means that its volumes

in both position and momentum space are fixed.
3 So what kind of ensemble would a large number of identical quantum states be?
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C
∑

n

e−nβ(ε−µ) = 1

⇒ C = 1∑
n e−nβ(ε−µ)

(quantum statistics).

Summary of Sections A--C

When a small system interacts with a large reservoir at temperature T , the

probability that it is in a particular state s that takes energy, volume and particles

(�E, �V, �N ) from the reservoir is given by equation 15.2

Ps = Cexp

(
−�E + p�V − µ�N

kT

)
There are two common ways of applying this, depending on the nature of the small

system. In the one approach, called Boltzmann or classical statistics, we consider

the small system to be a certain particle or group of particles that can occupy

various states. The probability that it occupies state s with energy εs is given by

(equation 15.5)

Ps = Ce−βεs (classical statistics, pυs << εs),

where (equation 15.3)

β ≡ 1

kT
.

In the second approach, called quantum statistics, we consider the system to be a

certain quantum state that may be occupied by various numbers of particles. If the

energy of a single particle in this state is ε then the probability that there are n

particles in this state is given by (equation 15.6)

Pn = Ce−nβ(ε−µ) (quantum statistics).

The constant of proportionality is determined by requiring that the sum over all

possibilities gives unity (equation 15.7). In classical statistics,

C = 1∑
s e−βεs

; in quantum statistics C = 1∑
n e−nβ(ε−µ)

.

D Applications of quantum statistics

We now use two examples to illustrate the use of quantum statistics. In the first,
we find the probability that a certain quantum state in an oven has a photon in it,
and in the second we find the probability that a certain quantum state in a metal
has an electron in it.
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Example 15.1 Consider a photon quantum state of energy 0.1 eV in an oven at
500 K. The chemical potential of a photon is zero. How much more likely are we
to find 0 photons than 1 in this particular state?

For T = 500K and ε − µ = 0.1eV, we have

β(ε − µ) = 1

kT
(ε − µ) = 2.32.

The ratio of the two probabilities is

P0

P1
= Ce−0

Ce−1β(ε−µ)
= e2.32 = 10.

It is 10 times more likely that this particular state is empty.

Example 15.2 In a particular metal at 300 K, the electrons each have chemical
potential µ = −2.03 eV. A certain quantum state has energy −2.00 eV, and it
can contain no more than one electron. What are the probability that it is empty
and the probability that it is full?

Using T = 300 K and ε − µ = 0.03 eV, we have

β(ε − µ) = 1

kT
(ε − µ) = 1.16.

According to equation 15.7, the constant C in equation 15.6 for the probability
is

C = 1∑
n=0,1 e−nβ(ε−µ)

= 1

e0 + e−1.16
= 1

1 + 0.31
= 0.76.

So the required probabilities are

P0 = Ce0 = (0.76)(1) = 0.76,

P1 = Ce−1.16 = (0.76)(0.31) = 0.24.

E Application of classical statistics

We now look at applications of classical statistics. If we are interested in rela-
tive probabilities we don’t need the constant C, because it appears in both the
numerator and denominator of these ratios:

Pi

Pj
= Ce−βεi

Ce−βε j
= e−β(εi −ε j ). (15.8)

If we are interested in the absolute probability for a state, however, the constant
C must be calculated from equation 15.7.

E.1 Examples

To illustrate the above, we examine the excitation of a hydrogen atom at various
temperatures. The two lowest energy levels of a hydrogen atom are ε0 = −13.6 eV
and ε1 = −3.4 eV.
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Example 15.3 At room temperature, what would be the ratio of hydrogen atoms
in the first excited state to the number in the ground state? Ignore degeneracies
(Section 6C).

We use equation 15.8 with ε1 − ε0 = 10.2 eV and T = 295 K:

β(ε1 − ε0) = 10.2 eV

kT
= 401.

So the ratio of the two probabilities is

P1

P0
= e−401 = 10−174.

Clearly, no hydrogen atoms will be in excited states at room temperature.

Example 15.4 At what temperature would we find about half as many hydrogen
atoms in the first excited state as in the ground state? (Ignore degeneracies.)

From equation 15.8 we have

P1

P0
= e−β(ε1−ε0) = 1

2
⇒ −ε1 − ε0

kT
= ln

1

2
.

With ε1 − ε0 = 10.2 eV, we can solve for T, getting

T = 1.7 × 105 K.

E.2 Excitation temperature

It is convenient to define the “excitation temperature” for the particles of a
system:

Te = (ε1 − ε0)/k. (15.9)

If we look at the relative probability for the small system to reach the first excited
state,

P1

P0
= e−(ε1 − ε0)/kT ,

we can see that for temperatures small compared with Te the exponent is large
and negative, so that there is little probability of excitation to even the first excited
state. That is, for T � Te, the system is pretty much confined to its ground state.

F Heat capacities

The molar heat capacity of a system is given by equation 10.14 as

CV = ν

2
R,

where ν is the number of degrees of freedom per particle. Each degree of free-
dom requires a certain minimum energy for excitation, corresponding to a certain
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Figure 15.4 Plot of molar
heat capacity vs.
temperature for a
hypothetical non-
condensing diatomic gas
in a typical room. The
number of degrees of
freedom per molecule
goes from 0 to 3 to 5 to 7,
as the excitation
temperatures for
translational, rotational,
and vibrational motions
are passed.

excitation temperature (equation 15.9). When the system is well below this tem-
perature, excitations will not occur and so that degree of freedom disappears. No
energy can be stored in it.

F.1 Diatomic gases

The molecules of gases each have three translational degrees of freedom.
Polyatomic molecules may also rotate and vibrate. As we saw in section 4C
(Figure 4.6), the common diatomic gases, such as N2, O2, and H2, can rotate
around two of the three rotational axes. They may also have two vibrational
degrees of freedom (corresponding to the kinetic and potential energies in terms
of relative coordinates) for vibrations along the molecular axis.

The excitation temperatures for a diatomic molecule in a room are typically
about 10−20 K for translational motion, 5 K to 50 K for rotational motion, and
2000 K to 10 000 K for vibrations (homework). Consequently, the number of
degrees of freedom per molecule will go from 0 to 3 to 5 to 7 as these thermal
barriers are passed, and these changes are reflected in the molar heat capacities,
as depicted in Figure 15.4. Although 10−20 K is far below what can be observed,
even this excitation energy is sensitive to the size of the container. For molecules
confined to dimensions measured in nanometers or less, the translational exci-
tation temperature rises to the point where we can observe this transition in the
laboratory (homework).

F.2 Solids

The atoms in solids are in three-dimensional potential wells, which give them six
degrees of freedom (three kinetic and three potential). These wells are a bit wider
than those for the atoms in diatomic gas molecules, so their wavelengths are longer
and the excitation energies correspondingly lower. The excitation temperature for
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Table 15.1. Molar heat capacities of some
common metals at room temperature, in
terms of the Dulong--Petit value 3R

Metal CV /3R Metal CV /3R

aluminum 0.97 silicon 0.85
copper 0.98 silver 1.01
lead 1.04 zinc 1.02
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Figure 15.5 Plot of molar heat capacity vs. temperature for several common solids.
At sufficiently high temperatures the molar heat capacities equal 3R, as we would
expect. But at lower temperatures, there is insufficient thermal energy for many of
the atoms to reach even the first excited state, so they become entrapped in the
ground state and lose their degrees of freedom. Note that the excitation
temperatures tend to be higher for the more rigid solids in which the atoms are
bound more tightly. (The molar heat capacity of diamond does not reach 3R until
around 2000 K.) Can you explain why this is? (see problem 38.)

vibrations in solids is typically measured in tens or hundreds of kelvins, which may
be compared with the thousands of kelvins needed for the excitation of vibrations
in common diatomic gases. Consequently, for most solids at room temperature
and above, the molar heat capacities (Table 15.1) are in close agreement with the
“Dulong--Petit law,”.

CV = 3R.

As the temperature is lowered, however, these degrees of freedom begin to dis-
appear and the heat capacity drops correspondingly (Figure 15.5).
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G Closely spaced states

Suppose now that several different states have the same energy εs . If the level
εs is ns times degenerate, then the probability P(εs) that a small system has this
energy is equal to the number of such states times the probability that it is in any
one of them.

P(εs) = ns Ps . (15.10)

Furthermore, the relative probability that the system is in level i rather than level
j is then

P(εi )

P(ε j )
= ni Ce−βεi

n j Ce−βε j
= ni

n j
e−β(εi −ε j ). (15.11)

For a band of closely spaced states the probability that the small system is in one
of them is given from equation 15.10 by

e

eu

el

nu states in
upper band

nl states in
lower band

Figure 15.6 The
probability for the energy
of a small system to be
within a band of closely
spaced states is given by
Pband = ∑

s nsPs =∫
g(ε)P(ε)dε, where g (ε) is

the density of states and
P(ε) = Ce−βε . If the band
widths are small
compared with kT , it is
often convenient to treat
each band as a single
degenerate level. Here we
have two bands, with
energies εu, εl and
degeneracies nu, nl,
respectively.

Pband =
∑

s

ns Ps =
∫

band

g(ε)P(ε)dε, (15.12)

where g(ε) is the density of states and P(ε) is the probability that the small system
is in any one state having that energy. If the width of the band is small compared
with kT , you can treat a band as if it were a single degenerate level (homework).
Figure 15.6 illustrates this for two bands.

Summary of Sections D--G

The relative probability for a small system to be in levels i and j is given by

(equation 15.8)

Pi

Pj
= e−β(εi −ε j ).

If level s is ns times degenerate, the probability that the system has energy εs is

(equation 15.10)

P(εs) = ns Ps,

and the relative probability for any two such degenerate levels is (equation 15.11)

P(εi )

P(ε j )
= ni

n j
e−β(εi −ε j ).

The probability that the system’s energy lies within a band of closely spaced states is

(equation 15.12)

Pband =
∑

s

ns Ps =
∫

band

g(ε)P(ε)dε.
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The excitation temperature is defined in terms of the energy separation between

the ground and first excited states (equation 15.9):

Te = ε1 − ε0

k
.

For temperatures small compared with this, the system is confined to the ground

state.

The molar heat capacity of a system is given by

CV = ν

2
R

where ν is the number of degrees of freedom per particle. As the temperature is

lowered below the excitation temperature, the corresponding degrees of freedom

disappear. These changes in the degrees of freedom per molecule are reflected in the

molar heat capacities.

H Equipartition

H.1 Average energy per degree of freedom

Imagine that a small system is a single degree of freedom and that the energy
stored in this degree of freedom is of the usual form ε = bξ 2, where b is a constant
and ξ is a position or momentum coordinate. According to the definition of the
mean value (2.1), the average energy stored in this degree of freedom is

ε =
∑

s

Psεs = C
∑

s

e−βεs εs, where C = 1∑
s e−βεs

. (15.13)

As we learned in Chapter 1 (equation 1.6), the number of quantum states within
a coordinate interval dξ is proportional to the length of this interval. Therefore,
the sum over states can be replaced by an integral (treating ξ as a continuous
variable): ∑

s

→ constant ×
∫

dξ .

With this replacement, equation 15.13 becomes

ε = constant × ∫ +∞
−∞ dξ e−βbξ2

bξ 2

constant × ∫ +∞
−∞ dξ e−βbξ2

· (15.13′)

The constants cancel, and the numerator can be integrated by parts (homework)
to get

+∞∫
−∞

dξe−βbξ2
bξ 2 = 0 + 1

2β

+∞∫
−∞

dξ e−βbξ2
.
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This last integral is identical to that in the denominator so they cancel, giving

ε = 1

2β
= 1

2
kT . (15.14)

This shows that with each degree of freedom is associated an average energy
(1/2)kT .4

H.2 Brownian motion

Consider a small system with three translational degrees of freedom. According
to the above result its average translational kinetic energy is

εtrans = 1

2
mν2 = 3

2
kT,

and so its root mean square speed is

νrms =
√

ν2 =
√

3kT

m
. (15.15)

This gives us a measure of the thermal motion of the particles of a system,
which may be extremely erratic owing to their rapid and random collisions. It
applies to all particles, ranging in size from the subatomic to the gigantic. But
as you will show in your homework, this thermal motion is only appreciable for
particles that are very small. It was first noticed in 1827 by a Scottish botanist,
Robert Brown, who was using a microscope to observe the jittering of tiny spores
suspended in water. Consequently, for particles large enough to be seen with a
microscope, it is often called “Brownian motion.”

Summary of Section H

Using classical statistics, we can show that if the energy in a degree of freedom is of

the form bξ 2, where b is a constant and ξ is a position or momentum coordinate,

then its average energy is given by (equation 15.14)

ε = 1

2
kT .

Consequently, the average translational kinetic energy for any particle that moves in

three dimensions is

εtrans = 1

2
mν2 = 3

2
kT,

and so its root mean square speed is (equation 15.15)

vrms =
√

v2 =
√

3kT

m

4 More generally, if the energy per degree of freedom is bξα then its average is (1/α) kT (homework).
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Problems

Sections A and B
1. Consider a reservoir with temperature, pressure, and chemical potential

T, p, µ, respectively. Initially, its entropy is S0. Then a small system interacts
with it, removing energy, volume, and particles �E, �V, �N . In terms of
the parameters S0, T, p, µ, �E, �V, �N , find
(a) the reservoir’s new entropy SR,
(b) the number of states accessible to the reservoir now,
(c) the probability, to an overall multiplicative constant factor, that the small

system is in the one state that takes �E, �V, �N from the reservoir

2. Consider a small system that is interacting with a reservoir at temperature
400 K, pressure 108 Pa, and chemical potential −0.3 eV.
(a) To go from state 1 to state 2, the small system must take an additional

0.03 eV of energy and 10−29 m3 of volume from the reservoir. How
many times more probable is it for the small system to be in state 1 than
state 2?

(b) To go from state 1 to state 3 the small system must take 0.4 eV of
energy and one particle (but no extra volume) from the reservoir. How
many times more probable is it that the small system is in state 1 than
state 3?

(c) To go from state 1 to state 4, the small system must take no energy
but one particle and 10−27m3 of volume from the reservoir. How many
times more probable is it that the small system is in state 1 than
state 4?

Section C
3. A certain very delicate organic molecule requires only 0.04 eV of energy

to be excited from the ground state. Upon excitation, its volume increases
by 2 × 10−31 m3. Under what pressure would p�V be equal to �E for this
excitation? To how many atmospheres would this correspond?

4. There are a few exceptional cases of extremely high pressure where the p�V
term cannot be ignored in the probability expression P = Ce−β(�E+p�V ).
One of these is a neutron star. The radius of a hydrogen atom is about 0.53 ×
10−10 m, and that of a neutron is negligible by comparison. The electron can
combine with the proton to form a neutron (releasing a neutrino), but this
state is 0.84 MeV higher in energy than the non-combined state. Assuming
that classical statistics gives roughly the right answer, calculate the minimum
pressure that must exist within a neutron star.

5. From the Bohr model, the radius of a hydrogen atom in the ground state is
0.53 × 10−10 m and the radius of the first excited state is four times larger.
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The energy of the ground state is −13.6 eV, and that of the first excited state
is −3.4 eV.
(a) What are the values of �E and p�V for excitation into the first excited

state at atmospheric pressure?
(b) At what pressure would the p�V term be comparable to �E? How many

atmospheres is this?

6. Consider a small system for which the energies of the states, measured relative
to the ground state, are εn = n(0.02 eV), n = 0, 1, 2, . . . The temperature of
the system is 273 K. (Use 1 + x + x2 + x3 + · · · = 1/(1 − x).)
(a) To three-decimal-place accuracy, what is the value of the constant C in

Ps = Ce−βεs ?
(b) What is the probability that this system is in the ground (n = 0) state?
(c) What is the probability that this system is in the first excited state?

7. Repeat the above problem for the case where the temperature is 500 K.

8. In a system at 290 K, a certain quantum state has energy that is 0.02 eV
above the chemical potential. Any number of particles (0, 1, 2, 3, . . .) may
occupy this state. Find the probability that at any instant the state contains
(a) 0 particles, (b) one particle, (c) two particles.
(1 + x + x2 + x3 + · · · = 1/(1 − x).)

Section D
9. A system has temperature 290 K and chemical potential −0.2 eV. For a

certain quantum state in this system, the energy per particle is −0.16 eV, and
any number of particles (bosons) may occupy it
(a) What is the value of C in the probability formula Pn = Ce−nβ(ε−µ) (to

three decimal places)?
(b) What is the probability that this quantum state contains zero particles?
(c) What is the probability that this quantum state contains one particle?

(1 + x + x2 + x3 + · · · = 1/(1 − x).)

10. Repeat the above problem for the case of identical fermions, for which no
more than one particle may occupy the state.

11. Consider the photons inside an oven at 500 K. Photons are bosons, so any
number of photons may occupy one state. If the chemical potential of a photon
is zero and the energy of a certain state is 0.2 eV, find
(a) the factor β(ε − µ) for this state,
(b) the constant C in the formula Pn = Ce−nβ(ε−µ), accurate to three decimal

places,
(c) the probability of there being no photons in this state at any particular

moment,
(d) the probability of there being two photons in this state at any particular

moment.
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12. Consider the photons inside an oven. The chemical potential of a photon
is zero. Photons are bosons, so any number of photons may occupy one
state. A certain state has energy 0.1 eV. At what temperature would the ratio
Pn=1/Pn=0 be equal to e−1?

13. The chemical potential for a conduction electron in a certain metal is −0.3 eV.
Electrons are fermions, so no more than one electron may occupy a given
state (n = 0 or 1 only). At room temperature (295 K), what is the probability
that a state of energy −0.27 eV is (a) unoccupied, (b) Occupied?

14. Helium atoms are bosons, so any number may occupy a given state. In very
cold liquid helium, suppose that there is a gap of about 3 × 10−4 eV between
the ground state and the first excited state. Below about what temperature
would helium atoms be mostly confined to the ground state?

15. Consider a system of particles at 1000 K for which the chemical potential is
−0.4 eV. Suppose that we are interested in a certain quantum state, in which
a particle would have an energy of −0.2 eV. How many times more likely is
it for this state to be unoccupied than for it to have one particle in it?

Section E
16. A certain kind of molecule has four different possible electronic configu-

rations. These have two different energies, as follows: one state of energy
−0.34 eV (the ground state), and three states of energy −0.30 eV (the excited
states).
(a) If a system of such molecules is at a temperature of 17 ◦C, what fraction

of them will be in the ground state at any time?
(b) At what temperature would half of them be in the excited states?

17. For a certain molecule, the first excited state lies 0.2 eV above the ground
state.
(a) At what temperature would the number of molecules in the ground state

be exactly 10 times the number in the first excited state?
(b) What is the excitation temperature for this molecule?

18. For a certain molecule in a system at 500 K, the energies of the various
quantum states, measured relative to the ground state, are given by ε =
n(0.1 eV), n = 0, 1, 2, . . .

(a) To three significant figures, what is the value of the constant C in the
formula Ps = Ce−βεs ?

(b) What is the probability that the molecule is in the level n = 1?
(c) The probability that it is in the level n = 2?
(1 + x + x2 + x3 + · · · = 1/(1 − x).)

19. For an energy ε = 1 eV, at what temperature would the ratio ε/kT be equal
to 1?
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20. A certain type of molecule requires 0.06 eV for excitation to the first excited
level, which is doubly degenerate. The other states are much higher, and we
can safely ignore them.
(a) What fraction of the molecules will be in the first excited level at

17 ◦C?
(b) At what temperature would we find 1% of these molecules at the first

excited level?

21. If 0.03 eV is required to excite the molecules in a certain system into their
first excited state, roughly what is the temperature below which there is a
rather low probability of excitation?

22. The mass of an average air molecule is about 5 × 10−26 kg. Assuming the
atmospheric temperature to be a constant 275 K at all altitudes and assuming
the gravitational acceleration to be a constant 9.8 m/s2, at what altitude h
would you expect to find the air density to be exactly half that at sea level?
(Hint : Ph/P0 = 1/2.)

23. A certain liquid at room temperature (295 K) has Avogadro’s number of
molecules, each having a certain magnetic moment. Owing to quantum
effects, there can be only three possible orientations of this magnetic moment,
the component along any one direction being equal to (1, 0, −1)µB (µB is the
Bohr magneton and equals 9.3 × 10−24 J/T.) The interaction energy between
a magnetic moment and an external magnetic field is given by E = −µµ · B.
In an external field of 2 tesla, find
(a) the value of βµB B (β = 1/kT ),
(b) the respective probabilities that a molecule is in each of the three possible

alignments,
(c) the average magnetic moment per molecule,
(d) the magnetic moment of the entire liquid.

24. The probability that a system is in a state s is given by Ps = Ce−βεs , where
C = (

∑
e−βεs )−1. Prove that you may measure energies relative to any level

you wish, by multiplying both numerator and denominatorby eβε0 where ε0

is any arbitrary energy. (Remember, T is the temperature of the reservoir,
which is constant.)

25. An air molecule has a mass of about 5 × 10−26 kg. Consider two differ-
ent possible states in which an air molecule might be found. In state 1 the
molecule moves in a certain direction at a speed of 400 m/s, and in state #2
the molecule is standing still. What is the ratio of the probabilities for the air
molecule to be in these two states, P1/P2, if the air temperature is (a) 17 ◦C,
(b) −40 ◦C?

26. The rotational inertia of a certain molecule around any axis is 10−48 kg m2.
The rotational angular momentum is quantized in the form L = √

l(l + 1) h,
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where l = 0, 1, 2, . . . What is the ratio of the probabilities for the molecule to
be in the l = 1 rotational state and the l = 0 state (P1/P0) if the temperature
is (a) 200 ◦C, (b) −100 ◦C?

27. The first excited state for the electrons of a certain molecule is 0.08 eV above
the ground state. When excited, the volume of the electronic cloud increases
by 10−28 m3. At 295 K and 1 atm, find
(a) �E + p�V for this excitation,
(b) the ratio of probabilities P1/P0.

28. The first vibrational state of a certain molecule requires an excitation energy
of 0.2 eV. At what temperature are there one quarter as many molecules in
the first excited vibrational state as in the ground state?

Section F
29. Starting from the first law for nondiffusive interactions, dE = dQ − pdV ,

and equipartition, prove that the molar heat capacity of a substance is given
by CV = (ν/2)R. (Assume that the potential energy reference level, u0, is
constant.)

30. The atomic mass number of a single nitrogen atom is 14, and the separation
between the two atoms in a nitrogen molecule (N2) is 1.098 × 10−10m. The
rotational kinetic energy is given by εrot = (1/2I )L2, where I is the rotational
inertia about the particular axis and the angular momentum is quantized in
the form L2 = l(l + 1) h2, where l = 0, 1, 2, . . . Find
(a) the rotational inertia of the nitrogen molecule about a perpendicular

bisector of the molecular axis,
(b) the energy required for excitation from the non-rotating l = 0 state to

the first excited rotational state,
(c) the excitation temperature for this excitation.

31. Repeat the above problem for a hydrogen (H2) molecule. The atomic mass
number for hydrogen is 1 and the separation between the two atoms is 0.373 ×
10−10 m.

32. The rotational inertia of a diatomic molecule around the molecular axis
is typically about 10−7 times the rotational inertia around a perpendicular
bisector of the molecular axis. With this information and the answers to the
two preceding problems, estimate the excitation temperature for rotations
about the molecular axis for nitrogen and for hydrogen.

33. Suppose that you wish to know the molar heat capacity of a certain gas
composed of tetrahedral-shaped molecules. This depends on the temperature,
because if certain excited states are inaccessible then the molecule will not
be able to store energy in those particular degrees of freedom.
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(a) If the first excited vibrational level of this molecule requires 0.2 eV of
energy, roughly what is the temperature below which you can ignore the
vibrational degrees of freedom?

(b) If the rotational inertia about any axis is 10−46 kg m2, roughly what
is the temperature below which you can ignore the rotational degrees
of freedom? (See problem 30 for the quantized form of the rotational
energy.)

(c) At room temperature, what would you expect the molar heat capacity
CV of this gas to be?

34. Consider an air molecule, of mass 5 × 10−26 kg, in a cubical room that mea-
sures 3 m each side.
(a) What are the lowest and next lowest possible kinetic energies for this

molecule? (Hint: What are the longest possible wavelengths in each
dimensions? From these, get the momentum components and thus the
minimum kinetic energy.)

(b) What is the excitation temperature for translational motion?

35. What is the excitation temperature for an air molecule confined to a tiny
cubical container of side 1 nm? (See the previous problem.)

36. An atom of mass 10−25 kg is confined in a very tiny box (e.g., within a crystal
lattice), so that it can only move about 2 × 10−11 meters in any dimension.
Roughly what is the excitation temperature for translational motion for this
atom?

37. A system of N particles has total energy E, so that the average energy
per particle is given by ε = E/N . If the states available to any parti-
cle have energies ε1, ε2, ε3, . . . , write down an expression that implic-
itly determines the temperature of the reservoir in terms of ε1, ε2, ε3, . . .

(Hint: Write down the expression that gives the average energy per parti-
cle in terms of the probabilities of being in the various states. This should
do it.)

38. Answer the question in the caption of Figure 15.5.

Section G
39. A certain particle is interacting with a reservoir at 500 K and can be in any

of four possible states. The ground state has energy −3.1 eV, and the three
excited states all have the same energy, −3.0 eV. What is the probability that
it is in (a) the ground state, (b) a particular excited state, (c) any state of
energy −3.0 eV?

40. Consider a system whose molecules each have five accessible states -- the
ground state and four excited states, all lying 0.1 eV above the ground state.



Probabilities and microscopic behaviors 349

At what temperature would as many molecules be in excited states as are in
the ground state?

41. About 0.4 eV is required to dissociate a single water molecule in liquid water
at room temperature into H+ and OH− ions. If the dissociated molecule has
twice as many different states accessible to it as does the non-dissociated
molecule, what fraction of the water molecules in a glass of water at room
temperature (295 K) would be dissociated at any instant?

42. In the hydrogen atom, the ground state has energy −13.6 eV and degeneracy
2. The first excited state has energy −3.4 eV and degeneracy 8.
(a) At 295 K, what is the ratio of the number of atoms in the first excited

state and the number in the ground state?
(b) At what temperature would this ratio be equal to 1/2?

43. Consider a system for which the energies of particles come in two bands. In
the lower band there are nl states, evenly spaced, extending from energy ε = a
to ε = b. In the upper band there are nu evenly spaced states, extending from
energy ε = c to ε = d . Answers should be in terms of a, b, c, d, nl, nu, β).
(a) What is the density of states, g(ε), (the number of states per unit energy

increment) in each of the bands?
(b) Using g(ε) from part (a) find the ratio of the number of all particles in

excited states to the number in the ground states.
(c) Now take the result from part (b) and apply it to the case where the

band widths are very small compared with kT i.e., (b − a)/kT � 1,

(d − c)/kT � 1. Factor out e−β(c−a) and use the expansion ex ≈ 1 + x
for x � 1. Your answer should be the same as that for two levels, of
energy c and a, that are nu and nl times degenerate, respectively.

(d) Repeat part (c) but applied to the other extreme, where the band widths
are very large compared with kT . Again, factor out e−β(c−a) but use the
fact that e−x ≈ 0 for x � 1.

44. In a certain system at 17 ◦C, there are n states in both the lower band and the
upper band.
(a) If the lower states all have energy −0.31 eV and the upper states all have

energy −0.29 eV, what is the ratio of the numbers of particles in the two
bands?

(b) Now suppose that the states in the upper band are evenly spread between
−0.29 and −0.27 eV. You will have to sum over all the upper states, using
a density of states given by g(ε) = n/(0.02 eV) in the integral. In this
case, what is the ratio of the numbers of particles in the upper and lower
states?

(c) Repeat the above, but assume that the states in the lower band are evenly
spread between −0.32 and −0.31 eV and those in the upper band are
evenly spread between −0.29 and −0.27 eV.
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Section H
45. A nitrogen molecule (N2) has mass 4.7 × 10−26 kg. In air at 20 ◦C:

(a) How many translational degrees of freedom does a single nitrogen
molecule have?

(b) What is the average translational kinetic energy of a single nitrogen
molecule?

(c) What is the root mean square speed, νrms, of a single nitrogen
molecule?

(d) What is the root mean square speed of a hydrogen molecule (H2), with
mass 3.3 × 10−27 kg?

46. The mass of a single nucleon is 1.7 × 10−27 kg and that of an electron is 9.1 ×
10−31 kg. In violent nuclear reactions, such as those occurring in exploding
warheads or in the interiors of stars, the temperatures are roughly 107 K. In
this environment, what is the root mean square speed of (a) a nucleon, (b) an
electron?

47. In Section H of the main text we calculated the average energy per degree of
freedom, ε = (

∫
e−βεεdξ )/(

∫
e−βεdξ ), for the case where the energy term

has the form ε = bξ 2. Show that when you integrate the numerator by parts,
you get (1/2)kT times the denominator.

48. Suppose that the energy stored in a degree of freedom is given by ε = b|ξ |α ,
where ξ is a coordinate, b is a constant, and α is any positive exponent.
Following a development parallel to that in Section H, prove that the average
energy stored in this degree of freedom is given by (1/α)kT . (Hint: If the
integrand is symmetric then the integral from −∞ to +∞ can be written as
twice the integral from 0 to + ∞. This allows you to eliminate the absolute-
value symbol in |ξ |.)

49. A small dust particle has mass 10−8 g. It falls onto a glass of ice-cold water
where it is supported by the surface tension, and moves freely in only two
dimensions. What is the root mean square speed of its Brownian motion
there?

50. A certain kind of plankton lives in the ocean at temperatures around 8
◦C. It is unicellular and has approximate dimensions 8 µm by 5 µm by 3
µm and the same density as water. It relies entirely on thermal energy to
propel it through the ocean water and bring it into contact with nutrients.
What is
(a) its root mean square speed, (b) the total distance it travels in a day

(roughly)?

51. A certain grandfather clock was driven by a pendulum, made of a 0.5 kg
weight on the end of a 2 m wire of negligible mass. But it hasn’t been
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running for years. The pendulum just hangs there inside the glass case at room
temperature (295 K). It has two degrees of freedom (kinetic and potential),
and there is no air convection inside the case.
(a) What is the mean thermal energy of the pendulum?
(b) What is the root mean square amplitude of the thermally induced swings

of the weight?
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In this chapter we will use classical statistics to analyze gases. Each individual gas
molecule is a “small system” that interacts thermally and mechanically with the
“large reservoir” of the rest of the gas. We first find the “Maxwell distribution”1

of particles as a function of their momenta or velocities and then apply this result
to various processes.

A Probability distributions

A.1 One dimension

Consider a single particle moving in the x direction. The number of quantum
states in any momentum interval is proportional to the length of that interval,
dpx (equation 1.6), and the probability for the particle to be in any one of these
states is proportional to e−βε (classical statistics). We combine these two factors
to write the probability for the momentum to lie in the range dpx as

P(px )d px = Ce−β p2
x /2mdpx .

The value of the constant C is determined by demanding that the x-momentum

1 Named after James Clerk Maxwell who first performed this analysis in 1859.

352
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must have some value, so the sum over all px must equal unity (homework):
+∞∫

−∞

P(px )dpx = 1. (16.1)

To do this integral, we could use the table of integrals in Appendix E, or we might
simply notice that the distribution is Gaussian in the momentum (Section 3B), so
that it has the form

P(px ) = 1√
2πσ

e−p2
x /2σ 2

, with σ 2 = m

β
. (16.2)

Either way we find that C = (β/2πm)1/2, so the probability distribution is

P(px )dpx =
√

β

2πm
e−βp2

x /2mdpx . (16.3)

Figure 16.1 The volume
of a hollow spherical shell
of radius p and thickness
dp is 4πp2dp. So the
number of quantum states
with momenta in the
range dp increases
quadratically with p.

A.2 Three dimensions

The probability that a system meets two or more independent criteria is the product
of the probabilities that it meets each (Section 2C). Therefore, the probability
that a particle has its three momentum components in the ranges dpx , dpy, dpz ,
respectively, is the product of the three individual probabilities:

P(px , py, pz)dpx dpydpz = P(px )dpx P(py)dpy P(pz)dpz .

Using the notation

p = (px , py, pz), p2 = p2
x + p2

y + p2
z ,

and

d3 p = dpx dpydpz,,

this becomes

P(p)d3 p =
(

β

2πm

)3/2

e−βp2/2md3 p. (16.4)

If we only care about the momentum’s magnitude and not its direction, we can
write the three-dimensional element d3 p in spherical coordinates,

d3 p = p2dp sin θdθdφ.

Then integration over the angles gives the volume of a hollow spherical shell of
radius p and thickness dp (Figure 16.1):

4πp2dp

So, the probability that the momentum’s magnitude lies within the range p and
p + dp is

P(p)dp = 4π

(
β

2πm

)3/2

e−βp2/2m p2dp. (16.5)
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In this form, the probability distribution for the particle’s momentum is no longer
pure Gaussian. It is the product of the number of accessible states (proportional
to 4πp2dp) times the (Gaussian) probability that it is in any one of them.

These results are easily converted into velocity distributions by writing p = mv
and putting the extra factors m into the constant of proportionality.

Summary of Section A

The probability distributions for the particles of a gas are as follows. In one

dimension (equation 16.3)

P(px )dpx =
√

β

2πm
e−βp2

x /2mdpx where β = 1/kT .

In three dimensions (equation 16.4)

P(p)d3 p =
(

β

2πm

)3/2

e−βp2/2md3 p,

or, if we care only about the momentum’s magnitude and not its direction, we have

(equation 16.5)

P(p)dp = 4π

(
β

2πm

)3/2

e−βp2/2m p2dp.

The corresponding distributions in velocities are obtained by substituting p = mv:

P(vx )dvx =
√

βm

2π
e−βmv2

x /2dvx , (16.3′)

P(v)d3v =
(

βm

2π

)3/2

e−βmv2/2d3v, (16.4′)

P(v)dv = 4π

(
βm

2π

)3/2

e−βmv2/2v2dv . (16.5′)

B Mean values

We can use the above probability distributions, along with the standard integrals
given in Appendix E, to calculate the mean value of any function of molecular
velocities or momenta. Here are some examples.

Example 16.1 What is the average value of vx for a molecule in a gas at temper-
ature T ?

The required mean value is given by

vx =
∫

vx P(vx )dvx =
√

βm

2π

+∞∫
−∞

e−βmv2
x /2vx dvx = 0.
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Figure 16.2 The Maxwell
probability distribution
for particles in a gas. The
quadratic term (∝ v 2)
dominates for small
speeds, and the
exponential (∝ e−(βm/2)v 2

)
dominates at larger
speeds. Values of the
most probable speed
vmax, the average speed
v = 1.128vmax, and the
root mean square speed
v = 1.225 vmax are
indicated.

We might have anticipated this result. The molecule is equally likely to be moving
in either direction, so the average velocity must be zero.

Example 16.2 What are the average values of the speed and the square of the
speed (v and v2) for a molecule in a gas at temperature T (Figure 16.2) ?

The speed is independent of direction, so we use the probability distribution
16.5′. The required mean values are

v =
∫

v P(v)dv = 4π

(
βm

2π

)3/2
∞∫

0

e−βmv2/2v3dv =
√

8kT

πm
, (16.6)

v2 =
∫

v2 P(v)dv = 4π

(
βm

2π

)3/2
∞∫

0

e−βmv2/2v4dv = 3kT

m
, (16.7)

where we refer to Appendix E to evaluate the integrals. The average speed
increases with temperature and decreases with molecular mass, as we would
expect.

The last result (16.7) repeats our previous proof that an average energy of
(1/2)kT is associated with each degree of freedom. Multiplying both sides of this
equation by m/2, we see again that for a particle moving in three dimensions,

1
2 mv2 = 3

2 kT .

C Particle flux

We now look at particle flux, or “current density,” which is the rate at which
particles cross a unit perpendicular area. If all particles were moving in the x
direction with the same velocity then the flux would be the product of the number
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r = number of particles per unit volume

vx

unit volumes

unit area

y

z

Figure 16.3 The flux of particles in the x direction. The number of particles crossing
a unit area per second is equal to the product of the number of particles per unit
volume, ρ, times the number of unit volumes that cross a unit area per second, vx.
Or in symbols, Jx = ρvx.

of particles per unit volume, ρ, times the number of unit volumes that cross unit
perpendicular area per second, vx (Figure 16.3),

Jx = ρvx .

If there is a distribution of particle velocities, we first look only at the part
of the flux due to those particles moving with velocities in the range between vx

and vx + dvx . Since the fraction of the particles with velocities in this range is
given by the probability distribution P(vx )dvx of equation 16.3′, we have

dρ = ρ P(vx )dvx ,

and the part of the flux due to these particles is

dJx = dρ vx = ρP(vx )vx dvx . (16.8)

Example 16.3 What is the rate at which cabin air escapes from a punctured
spaceship?

We define the cabin wall to be the y-z plane, with the cabin on the left so that
particles striking it are moving in the positive x direction. We use equation 16.3′

for the probability P(vx )dvx and integrate the flux over all vx > 0 to find the total
flux of particles striking each square meter of the wall per second:

Jx =
∫

vx >0

dJx = ρ

∞∫
0

P(vx )vx dvx = ρ

√
kT

2πm
. (16.9)

We need to multiply this by the area of the hole, A, to get the rate of loss in
particles per second. Writing the density as ρ = N/V , the rate of particle loss
becomes

dN

dt
= − N

V

√
kT

2πm
A. (16.10)
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2R

(a) (b)

2R

v

Figure 16.4 (a) For two particles of radius R to collide, their centers need come only
within 2R of each other. (b) As a particle travels, we can think of it as cutting out a
cylindrical volume each second of area σ = π (2R)2, and length v. The average
number of collisions that this particle undergoes each second would be equal to the
number of other particles whose locations were centered within this volume, if these
other particles were standing still.

In the homework problems, it can be shown that, for a gas at constant temperature,
integration of equation 16.10 gives exponential decay in the cabin pressure.

We could also use the particle flux to calculate the pressure exerted by a
gas on the walls of its container. The momentum of each particle changes by
−2mvx when it collides elastically with a wall in the yz-plane. Because pressure
equals force per unit perpendicular area and force equals the rate of change of
momentum, the pressure exerted on the wall would be

p =
∫

vx >0

2mvx dJx , (16.11)

where dJx is given by equation 16.8. This integral can be evaluated in a homework
problem to obtain the ideal gas law, p = NkT/V .

D Collision frequency and mean free path

We now calculate how often gas molecules undergo collisions and how far they
travel between these collisions, on average. These are called their “collision
frequency” and “mean free path,” respectively, and are given the symbols νc

and l.2

A molecule collides with any other molecule that comes within a center-to-
center distance of 2R, where R is the (effective) molecular radius (Figure 16.4a).
Since a molecule moves with an average speed v , we can think of it as cut-
ting out a volume each second of length v and cross sectional area σ = π (2R)2

2 Beware, the symbols for velocity, v , and for frequency ν (Greek nu) look very similar. So occa-

sionally you might have to distinguish them by context.
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(Figure 16.4b). If the other molecules were sitting still, then the number of col-
lisions it undergoes per second would be the number of other molecules whose
centers are located within this volume:

νc = particle density × volume cut out = ρσv .

But the other particles are not sitting still. Collisions involve the relative
motions of molecules and, as we will soon show, the average relative speeds
among colliding molecules are larger than their average absolute speeds by a
factor

√
2. Consequently, the actual collision frequency of the molecules is given

by

νc =
√

2ρσv σ = 4π R2, where R is the molecular radius. (16.12)

The collision frequency increases for denser gases (ρ), fatter molecules (σ ), and
faster motion (v). The average distance l traveled between collisions is simply
the product of the average speed times the average time between collisions:

l = v

(
1

νc

)
= 1√

2ρσ
. (16.13)

The reason for the extra factor
√

2 is that collisions are much more frequent
between molecules moving in opposite directions than between those moving
in the same direction. (Just as you pass more cars on a highway that are com-
ing towards you in the opposite lanes than are going with you in your lanes.)
So the collision frequency is weighted in favor of those molecules with higher
relative velocities. To derive this factor we write the probability that particle 1
has velocity v1 and particle 2 has velocity v2 as the product of the respective
probabilities,

P(v1, v2) = P(v1)P(v2) = Ce−βm(v2
1 + v2

2)/2 (16.14)

Next we write v1 and v2 in terms of the center of mass and the relative velocities
V, u, which are given by

V = v1 + v2

2
and u = v1 − v2.

so that

v1 = V + u

2
, v2 = V − u

2
,

Putting these expressions for v1 and v2 into equation 16.14 gives the fol-
lowing distribution in the center of mass and relative velocities (see problem
25):

P(V, u) = Ce−βmV 2
e−βmu2/4 (16.15)

For collisions, we don’t care about the center of mass velocity, so we either
ignore it or integrate it out. But we do care about the distribution in the relative
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velocity u. The above equation shows that it is of the same form as that for
absolute velocities, but with the replacement either m → m/2 or v → u/

√
2:

Ce−βmv2/2 → Ce−βmu2/4.

This gives the origin of the factor
√

2. In particular, we see from equation 16.6
that the average relative speed would be

u =
√

2 v =
√

16kT

πm
(16.16)

E Transport processes

A property that is unevenly distributed will become more uniform as the ran-
dom thermal motions of the molecules cause mixing.3 The rate of this diffu-
sive transport depends on average molecular speeds and the mean free path.
The faster and the farther the molecules go, the more quickly the mixing
progresses.

We call Q the property’s density and define the x direction as the direction
in which it varies, so that Q = Q(x). Here we list three familiar examples of
these “transport processes,” along with the corresponding property whose density
varies.

� In molecular diffusion the density of molecules of type i varies with x:

Q(x) = ρi (x). (16.17a)

� In thermal conduction the density of the thermal energy (i.e., the density of the parti-

cles times the average thermal energy of each) varies with x:

Q(x) = ρ
[ν

2
kT (x)

]
. (16.17b)

� In viscous flow the momentum density of flow in the y direction varies with x:

Q(x) = ρmv y(x). (16.17c)

E.1 One speed and one dimension

We begin by looking at the flux for the case where all particles move with the
same speed v in the x direction half going in the +x direction and the other half in
the −x direction. Once we get this result, we will then average it over all speeds
and all directions.

3 If some property of the gas varies from one region to the next, then the gas is not in equilibrium.

Nonetheless, we can safely use the tools of equilibrium thermodynamics as long as the relative

variations are small on the scale of the molecular separations (10−8 to 10−9 m in a typical gas).
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v

∆x
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Figure 16.5 Suppose that all molecules are moving in the x direction with velocities
±v, and that we are microscopic observers standing between positions x and
x + �x, watching the molecules pass by. The density of the property is Q(x) to our
left and Q(x + �x) to our right. In each of these regions, only half the particles are
moving towards us, so they carry only half the property Q from that region. So the
flux from our left is Q(x)v/2, and that from our right is −Q(x + �x)v/2.

We will imagine that we are microscopic observers, midway between points x
and x + �x, where the property’s densities are Q(x) and Q(x + �x), respectively
(Figure 16.5). In both regions only half of the particles are coming towards us
(the other half are going away from us) and so the flux (density times velocity)
past us of the property from each direction is given by

flux from left = + Q(x)

2
v, flux from right = − Q(x + �x)

2
v .

The sum of these two gives the net flux of this property past us:

net flux = −v

2
[Q(x + �x) − Q(x)] = − v

2

dQ

dx
�x .

But how do we decide upon the distance “�x”? To answer this question we
observe that molecules entering a new region generally require more than one col-
lision each, on average, in order to either completely acquire or deliver the prop-
erty for that region. For this reason, the distance �x would be some small number
n of mean free paths (�x = nl), and the preceding equation would become

net flux = −nlv

2

dQ

dx
. (16.18)

E.2 All speeds and all directions

In a real gas the particles are moving with a distribution of speeds and in all
directions. The x-components of a particle’s mean free path and velocity are
given by

l x = l cos θ, vx = v cos θ,
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where θ is the angle that its direction of motion makes with the x-axis. So, for real
gases we need to replace the product lv in equation 16.18 by l x vx and average
over all speeds and all directions. For those particles coming from the left4 we
would have

lv → (l x vx )ave =
∞∫

0

P(v)dv
1

2π

2π∫
φ=0

π/2∫
θ=0

sin θ dθdφ vl cos2θ,

Where the first integral is over speed and the second and third are over angle.
Because l is independent of both the speed and the angle (equation 16.13) and v
is independent of the angle, the right-hand side breaks into three factors:

(lx vx )ave = l


 ∞∫

0

P(v)vdv




 1

2π

2π∫
φ=0

π/2∫
θ=0

sin θ dθdφ cos2θ


 = l [v]

[
1

3

]
,

where l and v are given by equations 16.13 and 16.6, respectively. We put this
result for (l x vx )ave into equation 16.18 to get the “diffusion equation,”

net flux of Q = Jx = −nl v

6

dQ

dx
. (16.19)

We note that the main features of this result are common sense. First, the minus
sign indicates that the net transport is in the direction opposite to the gradient.
Diffusion takes things from higher concentrations toward lower concentrations,
and not vice versa. Second, the factors that are the particles’ average speed and
the mean free path tell us that the faster and farther the particles move, the faster
diffusion progresses.

For each of the equations 16.17a–c, we group all constants together, and the
diffusion equation takes on the following form.

� Molecular diffusion

Jx = −D
dρi

dx
, where the “diffusion constant” is D = nlv

6
. (16.20a)

� Thermal conduction

Jx = −K
dT

dx
, where the “thermal conductivity” is K = nl v

6
ρ

ν

2
k. (16.20b)

� Viscous flow

Jx = −η
dvy

dx
, where the “coefficient of viscosity” is η = nlv

6
ρm. (16.20c)

In the last equation, the momentum flux is called the “stress” and it measures
the sideways “drag” or “viscous” force between neighboring layers of a fluid

4 For those coming from the right, the θ integral goes from π/2 to π , and we get the same answer.
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(Figure 16.6). It has the units of pressure (force/area), but it differs in that the
force is parallel to the area rather than perpendicular to it.

Figure 16.6 The two
columns of dots represent
two neighboring layers of
a fluid that are flowing in
the y direction at different
speeds. The broken-line
arrows indicate diffusion
of the molecules in the x
direction. Particles
diffusing to the left carry
more y momentum than
those diffusing to the
right. This mixing makes
the fluid on the left speed
up and that on the right
slow down. That is, the
diffusion causes each
layer to exert a viscous
drag on the other.

E.3 Conserved properties

Generalizing from one to three dimensions, we can write all the above processes
as

J = −D ∇Q (diffusion equation), (16.21)

where Q is the density of the diffusing property and D is the appropriate diffusion
constant. If this property is conserved (as are particles, energy, and momentum,
for example) then it must satisfy the continuity equation (equation 12.17)

∂ Q

∂t
= −∇ · J (continuity equation),

which states that the change in concentration of the property inside any volume is
equal to the difference between the rate at which it enters and leaves (subsection
12E.5).

Taking the divergence of equation 16.21, using this expression for ∇ · J in the
continuity equation above, and then dividing by D gives the generalized form of
the “heat equation” (equations 12.20 and 12.21):

∇2 Q = 1

D

∂ Q

∂t
(heat equation), (16.22)

whose solution was given in equation 12.23. Namely, if the property varies in the
x direction and its concentration at time t = 0 is given by Q(x, t = 0) = f (x)
then its concentration at any later time is given by

Q(x, t) =
∫ ∞

−∞
f (x ′)

(
1√

4π Dt
e−(x−x ′)2/4Dt

)
dx ′. (16.23)

The first order “diffusion equation” 16.21 states that things diffuse from
higher to lower concentrations (J is backwards to the gradient), and the second
order “heat equation” 16.22 states that concentrations even out, decreasing near
local maxima (∂ Q/∂t < 0 when ∇2 Q < 0) and increasing near local minima
(∂ Q/∂t > 0 when ∇2 Q > 0).

Summary of Sections B--E

Using the probability distribution for molecular speeds 16.5′ we find the following.

The mean values of the speed and speed squared for a particle in a gas are

(equations 16.6, 16.7)

v =
√

8kT

πm
, v2 = 3kT

m
.
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The flux of particles moving in any direction and the rate at which the gas particles

exit an opening of area A in their container (ρ is the particle density) are

(equations 16.9, 16.10)

Jx = ρ

√
kT

2πm
,

dN

dt
= − N

V

√
kT

2πm
A.

The collision frequency and the mean free path (σ is the collisional cross section and

equals 4πR2, where R is the effective molecular radius) are (equations 16.12, 16.13)

νc =
√

2ρσv, l = v

(
1

νc

)
= 1√

2ρσ
.

The average relative speed ( u ) and absolute speed ( v ) of a system of colliding

particles are related by (equation 16.16)

u =
√

2 v .

If Q is the density of some property of the gas that varies from one region to the

next, it will even out as the random thermal motions of the molecules cause mixing.

If we define the x direction to be the direction in which Q varies, then the net flux of

this property past a point is given by the diffusion equation (equation 16.19)

Jx = −nl v

6

dQ

dx
,

where the average speed and mean free path are given by equations 16.6 and 16.13,

respectively, and where n is a measure of the number of collisions required to

transfer the property. Applications include the following important processes

(equations 16.20a--c).

� Molecular diffusion

Jx = −D
dρi

dx
, where the diffusion constant is D = nlv

6
.

� Thermal conduction

Jx = −K
dT

dx
, where the thermal conductivity is K = nlv

6
ρ

ν

2
k.

� Viscous flow

Jx = −η
dvy

dx
, where the coefficient of viscosity is η = nlv

6
ρm.

The generalization of the diffusion equation to all directions for the density Q of any

property is (equation 16.21)

J = −D∇Q (diffusion equation),
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where D is the appropriate diffusion constant. When combined with the continuity

equation for conserved properties, it gives (equation 16.23)

∇2 Q = 1

D

∂ Q

∂t
(heat equation),

which we have encountered before, at the end of Chapter 12.

Problems

For many of these problems, it will be helpful to consult the table of standard
integrals in Appendix E.

Section A
1. The probability that the x-component of velocity of a molecule lies in a certain

range is 0.3, that the y-component lies in a certain range is 0.2, and that it
the z-component lies in a certain range is 0.1. What is the probability that all
three components lie in the prescribed ranges?

2. For motion in one dimension and in terms of m, k, T , for what value of
the momentum will the probability be half as large as the probability for a
molecule to stand still?

3. Suppose that you invest half of your money in each of two businesses. Each
business has a 10% chance of failing. What is the probability that (a) both
will fail, (b) neither will fail?

4. Starting with P(p)d3 p = (
β

2πm

)3/2
e−βp2/2md3 p, derive P(v)d3v by replacing

p with mv.

5. The probability that the x-component of a molecule’s velocity lies in the
range dvx is given by equation 16.3′. Check that the normalization is correct
by integrating this probability distribution over all vx .

6. According to equation 16.3′, the distribution in vx for particles in a gas is
a Gaussian distribution. (See Section 3B.) The molecular mass is m and the
temperature is T.
(a) What is the standard deviation for the x-velocities of these particles?
(b) the coefficient for a Gaussian distribution is 1/

√
2πσ . Is the coefficient

obtained in this way the same as that in equation 16.3′?
(c) Since the distribution is centered around vx = 0, the square of the standard

deviation is equal to the mean value of v2
x . What is the mean value of

(1/2)mv2
x ?

7. Check the normalization of the expression 16.4′ for P(v)d3v , by expressing
d3v in spherical coordinates and then integrating over all values of these
coordinates.
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8. In terms of the molecular mass m and the temperature T, what is the most
probable speed for a molecule in a gas? (Hint: “Most probable” means that
P(v) is a maximum.)

9. If you have access to a computer that does numerical integration, find the
fraction of the molecules in a gas that have energies above (a) (3/2)kT , (b)
3kT , (c) 6kT .

Section B
10. Do the integrations in equations 16.6 and 16.7 to show that the answers given

are correct.

11. For a nitrogen (N2) molecule at room temperature (m = 4.7 × 10−26 kg, T =
295 K), what is its (a) average velocity, (b) average speed v , (c) root mean
square speed, (d) most probable speed (see problem 8)?

12. You are interested in the average value of v3 the speed cubed, for the molecules
of a gas.
(a) What is this in terms of m, k, and T ?

(b) What is the cube root of the mean cubed speed,
3
√

v3, for helium (m =
6.6 × 10−27 kg) at 295 K?

13. What is the ratio of the root mean square speeds for water and carbon dioxide
molecules at 295 K? (The molecular mass numbers are 18 and 38, respec-
tively.)

14. Of all the air molecules in a room, at any instant half are going in the +z
direction and the other half in the −z direction.
(a) In terms of m, k, and T , what is the average z-component of velocity,

vz , of the half going in the +z direction? (Hint: You might wish to write
vz = v cos θ and use spherical coordinates, with 0 ≤ θ ≤ π/2.)

(b) What fraction of the average speed v is your answer to (a)?

Section C
15. Do the integrations in equation 16.9 to show that the answer given is correct.

16. The density of air molecules at room temperature (295 K) and atmo-
spheric pressure is about 2.7 × 1025 molecules/m3. Their average mass is
4.8 × 10−26 kg. Use this and equation 16.9 to answer the following.
(a) What is the flux of particles striking a wall of your room (in particles per

square meter per second)?
(b) If a micrometeorite punctured a hole 0.2 mm in diameter in the wall of

a spaceship, at what rate would molecules leave if the air were held at
atmospheric pressure and room temperature?

17. Suppose that a spaceship has a tiny hole in its side, of area 1 mm2. The
volume of the cabin is 40 m3, and it is kept at a constant temperature of 17 ◦C.
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Initially, the density of air molecules in the cabin is 2.7 × 1025 molecules/m3.
The average mass of an air molecule is 4.8 × 10−26 kg.
(a) Initially, how many molecules leave the cabin per second?
(b) The rate at which the molecules leave the cabin is given by dN/N =

−Cdt , where C is a constant. What is the value of this constant?
(c) Find the expression for the number of particles, N, as a function of the

time t.
(d) How much time is required before the density of the air in the cabin falls

to half its initial value?

18. In the problem 17, in which air escapes through a puncture in a spacecraft:
(a) What is the average molecular kinetic energy of the escaping molecules?

(Hint: the faster moving molecules exit more rapidly, so the escaping
molecules tend to have higher than average kinetic energies. You might
weight the kinetic energy of particles having x-component of velocity
vx by the fraction of the exiting flux having that kinetic energy.)

(b) How fast will the temperature of the remaining air decrease?
(Answer in terms of m, T, A, and V , i.e., the molecular mass, tempera-
ture, area of the hole, and volume of the air in the spacecraft.)

19. A light bulb manufacturer wishes to evacuate bulbs by putting a tiny 0.5 mm
diameter hole in each bulb and then placing it in a vacuum. The air in the
bulb is at a temperature of 290 K and has a volume of 200 cm3. The average
mass of an air molecule is 4.8 × 10−26 kg. How much time is required before
the amount of air inside the bulb is reduced to 10−6 times its previous value?
(Hint: See problem 17.)

20. In Section C in the main text, we found that the pressure exerted by a gas
on the walls of its container is given by p = ∫

vx >0 2mvx dJx , where dJx is
the flux due to the particles whose velocities lie in the range dvx . Do the
integration, and see whether the answer gives pV = NkT .

Section D
21. Four cars are all equidistant from an intersection and are traveling toward it at

10 m/s. Suppose that you are in the car traveling north. What would be your
speed relative to the car traveling (a) south, (b) east, (c) west, (d) another car
traveling north at 10 m/s?, (e) If cars going in each of these directions were
equally spaced, which would you pass most frequently?

22. If the temperature of a gas is doubled, by what factor do the following change:
(a) the collision frequency, (b) the mean free path?

23. Assuming that they both have the same temperature, pressure, and molecular
radius, do molecules in nitrogen gas (N2) or water vapor (H2O) undergo
collisions more frequently? By how many times?
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24. Consider two systems, one of pure helium gas and one of pure nitrogen gas,
at standard temperature and pressure (0 ◦C, 1 atm). Under these conditions,
a mole of gas occupies 22.4 liters of volume.
(a) Given the following densities of their liquid phases, roughly what is the

molecular radius of each? N2, density = 0.808 g/cm3 (liquid phase); He,
density = 0.145 g/cm3 (liquid phase).

(b) In their gas phases, what is the mean free path of a molecule of each?
(c) Also in their gas phases, what is the collision frequency for a molecule

of each?

25. Show that equation 16.15 follows from 16.14.

Section E
26. Calculate the value of the following functions, averaged over the +z hemi-

sphere θ ≤ π/2: (a) cos θ , (b) sin θ , (c) cos2 θ , (d) cos φ.

27. Suppose that the particle density, ρ, increases in the +x direction.
(a) What is the sign of ∂ρ/∂x?
(b) According to equation 16.20a, in which direction will the net particle

flux be? (D is positive.)

28. If the temperature of a gas is doubled, is the rate of diffusion increased or
decreased? By what factor?

29. All else being equal, would the rate of transport of any property be larger or
smaller in gases with fatter molecules? Can you give a physical explanation
for this?

30. All else being equal, does diffusion in a gas go faster or slower, or is there no
difference, if (a) the molecules are fatter, (b) the molecules are more massive,
(c) the gas is denser, (d) the gas is hotter?

31. In air at 295 K, the molecules have five degrees of freedom each and an aver-
age mass of 4.8 × 10−26 kg, and there are 2.5 × 1025 molecules/m3. Each
molecule has radius 1.9 × 10−10 m. Assume that n = 1. With this infor-
mation, estimate the value of the following for diffusive processes in air:
(a) the diffusion constant, (b) the coefficient of thermal conductivity, (c) the
coefficient of viscosity.

32. If you calculate the coefficient of thermal conductivity for air from equation
16.20 (see part (b) of the preceding problem), you will find that it is about five
times smaller than that measured experimentally. How might you account for
the difference?

33. The coefficient of thermal conductivity for air is about 0.023 W/(m K).
Estimate the net flux of heat through double-glazed windows, if the air gap
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is 0.8 cm thick and the temperature outside is 15 ◦C cooler outside than that
inside.

34. For viscosity, we consider the flow speed v for various layers of a gas. If
our concern is the motion of particles in the y direction, why is the flux of
particles in the x direction relevant?

35. Suppose that a quantity being transported diffusively is measured in units of
“#” and that its density Q in a certain region of space varies as ax3. In terms
of #, kg, m, s, what are the units of (a) Q, (b) a, (c) the diffusion constant D?
(d) In terms of D and a, what is the rate of change of concentration at the
point x = 0.5 m?

36. Suppose that we are interested in diffusion in the x direction and that some
property is suddenly injected into a gas at point x0, in such a way that its
initial density function is given by Q(x, t = 0) = Q0δ(x − x0). Diffusion
causes it to spread out with time. In terms of the diffusion constant D:
(a) How does the width of the spread, as measured by the standard deviation

σ , vary with time?
(b) How does the concentration at point x = x0 vary with time?
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Individual atoms have magnetic moments due to the orbits and spins of the electri-
cally charged particles within them. Interaction with imposed external magnetic
fields tends to produce some ordering of these magnetic moments. But this order-
ing is opposed by thermal motion, which tends to randomize their orientations. It
is the balance of these two opposing influences that determines the magnetization
of most materials.

A Diamagnetism, paramagnetism, and ferromagnetism

Consider what happens when we place a material in an external magnetic field.
According to Lenz’s law, any change in magnetic field through a current loop pro-
duces an electromotive force that opposes the intruding field. On an atomic level,
each electron orbit is a tiny current loop. The external field places an extra force on
the orbiting electrons, which causes small modifications of their orbits and a slight
magnetization of the material in the direction opposite to the external field (home-
work). This response is called “diamagnetism” and is displayed by all materials.

In addition, there is a tendency for the tiny atomic magnets to change their
orientations to line up with an imposed external field (Figure 17.1). This response
is called “paramagnetism.” It gives the material a net magnetic moment in a
direction parallel to the imposed external magnetic field. Not all materials are
paramagnetic, because in some materials the atoms have no net magnetization
to begin with and in others the atomic magnets cannot change their orientations.

369
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(a) (b)

B

Figure 17.1 Paramagnetism. (a) Normally, the magnetic moments of the particles
in a system have random alignment. (b) When the material is placed in an external
magnetic field B, the magnetic moments tend to become aligned with this field,
because it is the state of lower energy and higher probability. Thermal agitation
prevents perfect alignment of all the particles.

Figure 17.2 Ferromagnetism. (a) In ferromagnetic materials, the magnetic
moments of neighboring atoms are strongly coupled, so that all within any one
domain have nearly the same alignment. This gives each domain a large magnetic
moment. (b) Here the domains are fully aligned with an imposed external field.
Because of their large magnetic moments, the magnetic energy µz B is very large
compared with kT, so the tendency for alignment dominates over the randomizing
influence of thermal agitation.

But most materials are paramagnetic, and their paramagnetism dominates over
diamagnetism.

In a few materials the magnetic moments of neighboring atoms are very
strongly coupled, so that they form “domains” within which the atoms all have
nearly the same magnetic orientation. These materials become very strongly
magnetized when placed in external magnetic fields, because the domains as a
whole line up with the external field and the strong coupling between neighboring
atomic magnetic moments prevents any one from changing its orientation (Figure
17.2). This effect is called “ferromagnetism.”

Paramagnetism provides the most appropriate challenge for our statistical
tools. The alignment of the tiny atomic magnetic moments with an external field
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is a statistical process, the tendency for alignment being opposed by thermal
agitation. For ferromagnetism, the system’s basic independent elements are the
magnetic moments of macroscopic domains, which are much larger than those of
the individual atoms and therefore much less affected by thermal agitation. Dia-
magnetism can be understood from classical electricity and magnetism, without
statistical tools.

B The nature of the atomic magnets

B.1 General

In subsection 1B.7 we learned that the energy of interaction between a magnetic
moment � and an external magnetic field, B, is given by −� · B. So if we define
the z direction to be that of the external magnetic field, the magnetic interaction
energy is −µz B (equation 1.17). We also learned that the magnetic moment is
proportional to the angular momentum component Lz (equation 1.15) and that
the latter is quantized in units of h : Lz = lz h, where lz = 0, ±1, ±2, . . . , ±l.
Thus we have

µz = g

(
e h

2m

)
lz, g =




+1, proton in orbit,
0, neutron in orbit,

−1, electron in orbit,

(17.1)

for lz = 0, ± 1, ± 2,. . . , ± l. We found a similar expression for the magnetic
moments due to the particles’ spins:

µz = g

(
e h

2m

)
sz, g =




+5.58, proton spin
−3.82, neutron spin,

−2.00, electron spin.

Here

sz =
{

±1/2, ± 3/2,. . . , ± s, fermions,
0, ±1, ±2,. . . , ±s bosons,

(17.2)

Protons, neutrons, and electrons are spin-1/2 fermions, so for these particles sz

can only have the values ±1/2.
The constant e h/2m in the above expressions varies inversely with the parti-

cle’s mass. For the electron it is called the Bohr magneton and given the symbol
µB. For a proton or neutron it is called the nuclear magneton and given the symbol
µN. We have

e h

2m
=

{
µB = 9.27 × 10−24 J/T Bohr magneton (electrons),
µN = 5.05 × 10−27 J/T nuclear magneton (nucleons).

(17.3)

The less massive electrons have much larger magnetic moments and there-
fore dominate the magnetic moments of most atoms. In fact, we often ignore
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mz,spin = −2szmB

mz,orbit = −lzmB

Figure 17.3 An atomic
electron makes two
contributions to the
magnetic moment of the
atom, one due to its orbit
and the other due to its
spin. Both orbits and
spins create tiny current
loops, with corresponding
magnetic moments. The
gyromagnetic ratio g is
−1 for the orbit and −2
for the spin.

contributions from the nucleus except in the contexts of nuclear physics, nuclear
magnetic resonance, high-resolution spectroscopy, and the small residual mag-
netism of atoms whose electrons have zero net angular momentum. Because of
its dominance, we will concentrate on electron magnetism for the rest of this
chapter. The treatment of nuclear magnetism would be the same, except for the
replacements

µB → µN, gelectron → gappropriate nucleon. (17.4)

B.2 The electrons

An electron’s total magnetic moment is the sum of the contributions from its orbit
and from its spin. So we combine equations 17.1, 17.2, and 17.3 to write the total
magnetic moment as (Figure 17.3)

µz = (
gorbitlz + gspinsz

)
µB = −(lz + 2sz)µB. (17.5)

For an atom, l and s are the total orbital and total spin angular momentum
quantum numbers for all the electrons combined, and their z-components may
take on the following values:

lz = 0, ±1, ±2, . . . , ±l,

sz =
{

0, ± 1, ± 2, . . . ± s, for an even number of electrons,
±1/2, ± 3/2, . . . ± s, for an odd number of electrons.

(17.6)

The range of values for lz and sz is quite limited, because the electrons in an
atom tend to have configurations that minimize the total angular momentum. In
fact, completed electron shells have no net angular momentum (l = 0, s = 0),
and only electrons in the outer unfilled shells make any net contribution at all.
Shells that are nearly filled are best treated as being completely filled shells plus
positively charged “holes” corresponding to the missing electrons.
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C Paramagnetism

C.1 The general case

We now study the magnetic moment of a paramagnetic material that is placed
in an external magnetic field, B. The magnetic moment M of a large number of
atoms is the product of the number of atoms and the average magnetic moment
of each: the z-component is given by

Mz,total = N µz and so Mz,molar = NAµz . (17.7)

To calculate the mean value µz we use the definition of mean values 2.1 and
the probabilities given by equations 15.5 and 15.7:

µ =
∑

s

Psµs, where Ps = Ce−βεs = e−βεs∑
s e−βεs

. (17.8)

According to equation 17.5, the state s is defined by the quantum numbers lz, sz ,
and its energy is given by −µz B. So the mean value of the z-component of
particle’s magnetic moment is

µz =
∑
lz ,sz

P(lz ,sz )µz =
∑

lz ,sz eβµz Bµz∑
lz ,sz eβµz B . (17.9)

Writing µz explicitly as −(lz + 2sz)µB, this becomes (problem 11)

µz = − µB

∑
lz ,sz e−(lz+2sz )x (lz + 2sz)∑

lz ,sz e−(lz+2sz )x
, where x = βµB B = µB B

kT
· (17.10)

Example 17.1 A material of 1025 atoms at 295 K is in a magnetic field of 1 T.
If the total orbital and spin angular momentum quantum numbers of each atom’s
electrons are l = 0 and s = 1/2, what is the average magnetic moment of a single
atom, and of the entire material?

We use equation 17.10. For an external field of 1 T and a temperature of
295 K,

x = µBB/kT = 2.3 × 10−3.

The quantum numbers lz, sz take on only the two sets of values (0, ±1/2), so
lz + 2sz = ±1 and

µz = −µB
e−x (1) + e+x (−1)

e−x + e+x
= −µB(−2.3 × 10−3) = 2.1 × 10−26J/T.

The magnetic moment of the entire system of 1025 atoms is

Mz,total = Nµz = 0.21 J/T.

Expression 17.10 for the average magnetic moment µz can be simplified if the
value of x = µBB/kT in the exponent is either much smaller or much larger than 1.
We now examine these two regions more closely and show that the magnetic



374 Introduction to thermodynamics and statistical mechanics

Mz

(lz + 2sz)max NmB

x = mB B / kT
0 1 2 3

Figure 17.4 Plot of magnetic moment Mz vs. x = µBB/kT for a typical paramagnetic
substance. For µBB/kT � 1, the magnetic moment increases linearly with the
external magnetic field according to the Curie law, Mz = C(B/T). For µBB/kT � 1,
the magnetic moment reaches its maximum value, (lz + 2sz)maxNµB. For µBB/kT
intermediate between these two extremes, it would be necessary to use equations
17.7 and 17.10 for the magnetic moment.

moment increases linearly with x for x � 1 and approaches a constant maximum
value for x � 1 (Figure 17.4).

C.2 µB B � kT

In the limit x = µBB/kT � 1, the magnetic energy is small compared with the
thermal energy, so the tendency for magnetic moments to align with the external
field is greatly reduced by thermal randomization. Example 17.1 demonstrated
that even for a strong magnetic field at room temperature, x is only 0.0023. That
is typical. Except for very low temperatures or magnetic fields much stronger
than are attainable on Earth, we can expect x to be small.

For these small exponents, we can use the expansion e−δ ≈ 1 − δ for δ � 1
to transform equation 17.10 into

µz = −µB

∑
lz , sz [1 − (lz + 2sz) x] (lz + 2sz)∑

lz , sz [1 − (lz + 2sz) x]
·

All terms linear in lz + 2sz add up to zero, because they come in positive and
negative pairs (e.g., lz = 0, ±1, ±2, . . .), which cancel. So we drop the linear
terms, which gives

µz = µBx

∑
lz , sz (lz + 2sz)

2∑
lz , sz 1

, where x = µB B

kT
· (17.11)
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If we explicitly factor out B/T from x and multiply by Avogadro’s number, we
get the following “Curie law” for the molar magnetic moment of this substance:

Mz,molar = NAµz = C
B

T
, for

µB B

kT
� 1, (17.12)

where the Curie constant C is given by (problem 12)

C = NAµ2
B

k

∑
lz ,sz (lz + 2sz)

2∑
lz ,sz 1

=
(

3.75
J K

T2 mole

) ∑
lz ,sz (lz + 2sz)

2∑
lz ,sz 1

· (17.12′)

This result tells us that for most materials under most ordinary conditions, the
magnetic moment is directly proportional to B/T . This ratio reflects the battle
between the energy of magnetic alignment (∝ B) and the energy of thermal
randomization (∝ T ).

The factor on the right of equation 17.12′ is a ratio of positive integers that
depends on the allowed values of lz and sz . The denominator is simply the number
of different (lz, sz) states. In most cases, the sum includes all values of lz from
−l to + l and all sz from −s to + s. However, the allowed values of lz and sz

may be interdependent if there is strong “spin--orbit coupling” between the spin
and orbital magnetic moments.

C.3 µB B � kT

The limit x = µBB/kT � 1 is primarily of interest to those doing low-
temperature physics or astrophysics. In this limit, magnetic energy dominates
over thermal energy, so the tendency to align with the external field dominates
over thermal randomization.

The sums in equation 17.10 include factors like enx , where n is an integer.
When x � 1, enx � e(n−1)x , so we only need consider the one term in which the
exponent attains its maximum value. All other terms are negligible in compar-
ison. This greatly simplifies the calculation of µz , because if we keep only the
largest term then the exponential factor in the numerator cancels with that in the
denominator, and using (lz + 2sz)min = −(lz + 2sz)max, we are left with simply

µz = µz,max = (lz + 2sz)maxµB, for
µB B

kT
� 1. (17.13)

That is, the average value of the magnetic moment of a particle is its maximum
value, because all magnetic moments are lined up with the external field. This
is what we would expect in the limit of high magnetic field and low thermal
agitation.

The total magnetic moment per mole in this limit would be

Mz,molar = NAµB(lz + 2sz)max

=
(

5.58
J

T mole

)
(lz + 2sz)max , for

µB B

kT
� 1.

(17.14)
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Summary of Chapter 17

Diamagnetism is the tendency displayed by all materials to produce a small

magnetic moment that opposes the introduction of an applied external magnetic

field. It is correctly described by Lenz’s law in electromagnetism. Paramagnetism is

a stronger effect and is displayed by most materials. It reflects the tendency for the

atomic magnetic moments to align themselves with the imposed external field.

Ferromagnetism is observed in a few materials where the neighboring atomic

magnets interact very strongly with each other, producing domains in which the

atoms have nearly the same alignments. In this chapter we have used classical

statistics to study paramagnetism.

The magnetic moments caused by orbiting electrical charges are as follows

(equation 17.1)

µz = g

(
e h

2m

)
lz, g =




+1, proton in orbit,
0, neutron in orbit,

−1, electron in orbit,

lz = 0, ±1, ±2,. . . , ±l, and those due to their spins are given by (equation 17.2)

µz = g

(
e h

2m

)
sz, g =




+5.58, proton spin,

−3.82, neutron spin,

−2.00, electron spin,

sz =
{

±1
/

2, ± 3
/

2, . . . , ±s, fermions,
0, ±1, ±2, . . . , ±s, bosons.

The factor e h/2m is given by (equation 17.3)

e h

2m
=

{
µB = 9.27 × 10−24 J/T Bohr magneton (electrons),
µN = 5.05 × 10−27 J/T nuclear magneton (nucleons).

Because the Bohr magneton is so much larger than the nuclear magneton, the

magnetic properties of most materials are dominated by the electrons. The

gyromagnetic ratio for the electron orbit is −1 and for the electron spin is −2, so we

can write the magnetic moment for the electrons of an atom as (equation 17.5)

µz = (
gorbitlz + gspinsz

)
µB = −(lz + 2sz)µB,

where the quantum numbers lz, sz may take on the values (equation 17.6)

lz = 0, ±1, ±2, . . . , ±l,

sz =
{

0, ±1, ±2, . . . ± s, for an even number of electrons,
±1

/
2, ±3

/
2, . . . ± s, for an odd number of electrons,

and where the values of l and s depend on the particular electronic configuration. If

there is spin--orbit coupling, the allowed values of lz and sz may not be independent

of each other.
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The same treatment applies to molecules, ions, free electrons, or whatever the

basic elementary unit of the material is. Nuclear magnetism would be treated in the

same way, except that the Bohr magneton is replaced by the nuclear magneton and

the electron’s gyromagnetic ratio by that of the nucleons (equation 17.4):

µB → µN, gelectron → gappropriate nucleon.

We considered a material in an external magnetic field B oriented along the

positive z-axis. According to classical statistics the average value of an atom’s

magnetic moment is (equation 17.10)

µz = −µB

∑
lz , sz

e−(lz+2sz )x (lz + 2sz)∑
lz , sz

e−(lz+2sz )x
, where x = βµB B = µB B

kT
.

In the common case where µBB << kT , this can be written as the Curie law for

the magnetic moment per mole (equations 17.12, 17.12′):

Mz, molar = C
B

T
, for

µB B

kT
<< 1,

where

C =
(

3.75
J K

T2 mole

) ∑
lz , sz

(lz + 2sz)
2∑

lz , sz
1

.

In the more exceptional case where µBB >> kT , all magnetic moments align

with the magnetic field and the molar magnetic moment reaches its maximum value

(equation 17.14):

Mz,molar = NAµB(lz + 2sz)max

=
(

5.58
J

T mole

)
(lz + 2sz)max, for

µB B

kT
>> 1.

Example 17.2 Consider a material whose molecular electron clouds have orbital
and spin angular momentum quantum numbers l = 1 and s = 1/2, so that the
allowed values of lz are 0, ±1 and the allowed values of sz are ± 1/2. If a mole
of this material at room temperature were in an external field of 3 T, what would
be its magnetic moment?

For this case, the factor x = µBB/kT is given by

x = 6.8 × 10−3.

Because this is much less than 1, the material obeys the Curie law. The six different
states are given by

(lz, sz) = (1, 1/2), (1, −1/2), (0, 1/2), (0, −1/2), (−1, 1/2), (−1, −1/2),

so that ∑
lz ,sz (lz + 2sz)

2∑
lz ,sz 1

= 22 + 02 + 12 + (−1)2 + 02 + (−2)2

6
= 10

6
.
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Putting this into equation 17.12′ gives the following value for the Curie constant:

C =
(

3.75
J K

T2 mole

)
10

6
= 6.25

J K

T2 mole
·

Thus the molar magnetic moment is

Mz,molar = C
B

T
=

(
6.25 × 3

295

)
J

T mole
= 0.0636

J

T mole
·

Example 17.3 If the above material’s temperature were 0.1 K, what would be
its magnetic moment?

In this case the factor x = µBB/kT is given by

x = 20 >> 1,

so all the magnetic moments are aligned along the z-axis and we use the result
17.14 with (lz + 2sz)max = z, obtaining

Mz,molar =
(

5.58
J

T mole

)
(lz + 2sz)max = 11.2

J

T mole
.

Problems

Section A
1. Consider the magnetic moment caused by the orbit of an electron that is in

the plane of this page and going clockwise as seen from above.
(a) Does this magnetic moment point into or out of the page?
(b) We now apply an external magnetic field that points down into the page.

Does the resulting magnetic force on the orbiting electron point radially
inward or outward? Does it add to or detract from the Coulomb force of
attraction between the electron and the nucleus?

(c) With this change in the centripetal force, will the electron’s orbital speed
increase or decrease? Will its magnetic moment increase or decrease?
Does this change in its magnetic moment parallel or oppose the applied
external field?

(d) Repeat the above for an applied magnetic field pointing upward out of
the page.

2. (a) Explain physically why ferromagnetic materials normally become much
more strongly magnetized than paramagnetic materials. (Hint: Why
would thermal agitation be less effective in randomizing the atomic
alignments?)

(b) Under what conditions might you expect paramagnetism to be as strong
as ferromagnetism?
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Section B
3. The spin gyromagnetic ratio of the neutron is negative. What does that imply

about the distribution of charge within it?

4. Suppose that a positively charged spin-1/2 particle with a negative spin
gyromagnetic ratio were found. What would you conclude about the net
charge and charge distribution within this particle?

5. The magnitude of the total angular momentum of an atom is given by√
l(l + 1) h, and the maximum z-component is l h. What is the minimum

angle that the angular momentum vector can make with the positive z-axis
for the following values of l: (a) 1, (b) 2, (c) 3?

6. If all electrons are spins-1/2 particles (s = 1/2, sz = ±1/2), how is it pos-
sible for the z-component of the spin angular momentum of some atoms or
molecules to be whole integers (sz = 0, ±1, etc.)?

7. A spin-1/2. negatively charged, particle has spin gyromagnetic ratio g = −2
(something like an electron, but with a different mass). If its magnetic moment
is µz = ±4.5 × 10−26J/T, what is its mass?

8. A certain atom has two electrons outside the last closed shell, and these are
each in an l = 1 orbit. Given this information only, what are the possible
values of l and s for this atom’s electrons? List all the combinations (lz, sz)
that might be possible.

9. Calculate the spin magnetic moment for a meson that has gspin = +1 and
mass 1.37 × 10−27 kg.

10. A charmed quark is a spin-1/2 particle with gspin = +2/3. Its precise mass is
unknown but is estimated to be around 3.5 × 10−27 kg. Estimate the magnetic
moment for this quark.

Section C
11. Show that equation 17.10 follows from 17.9.

12. Show that equation 17.11 follows from 17.10 (for x � 1) and that equations
17.12 and 17.12′ follow from 17.11.

13. Show that equation 17.13 follows from 17.10 (for x � 1).

14. For a material in a magnetic field of 5 T, for what temperature would
x = µBB/kT be equal to unity?

15. The tendency for particles’ magnetic moments to line up in an imposed
magnetic field is opposed by their random thermal motions. Thermal energies
are typically kT and magnetic energies are µz B.
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(a) Calculate these two energies for an electron in a magnetic field of 1 T at
290 K. Which dominates?

(b) At what temperature would the two be comparable for a proton in a field
of 1 T?

16. In sodium metal, each atom has two complete electronic shells for which
l = 0, s = 0, and one electron left over in a state for which l = 0, s = 1/2. If
a mole of sodium is sitting in an external field of one tesla at room temperature
(295 K), find (a) its Curie constant, (b) its magnetic moment.

17. Consider a mole of a certain material for which there is strong spin--orbit
coupling in the electron clouds, such that the only allowed sets of values for
(lz, sz) are (1, −1/2), (0, 1/2), (0, −1/2), (−1, 1/2).
(a) What is the Curie constant?
(b) In an external field of 2 T, what is its magnetic moment at a temperature

of 103 K? At 10 K?
(c) If it is sitting in the Earth’s field of about 10−4 T, below what temperature

would you expect this material to become nearly completely magnetized?

18. Consider a mole of a material for which each molecule’s electron cloud has
l = 1, s = 0; there is no spin--orbit coupling. It is placed in an external field
of 2 T. For this material, find
(a) its Curie constant,
(b) its magnetic moment at a temperature of 273 K,
(c) the value of x = µBB/kT at a temperature of 1.4 K,
(d) the magnetic moment at a temperature of 1.4 K.

19. Consider a mole of a material made of molecules for which the electron
clouds each have l = 0, s = 1; there is no spin--orbit coupling. It is placed
in an external magnetic field of strength 3 T, and is at a temperature of 2 K.
For this material, find
(a) the value of x = µBB/kT ,
(b) the magnetic moment.

20. Consider a material whose molecular electron clouds each have l = 2, s =
1/2; there is no spin--orbit coupling. A mole of this material is at 295 K and
in a field of strength 10−4 T.
(a) What is the Curie constant for this material?
(b) What is its magnetic moment?
(c) What is the average magnetic moment per molecule?

21. Consider a material for which the atomic electron clouds have no net angular
momentum (l = 0, s = 0). The neutrons in each nucleus also have no net
angular momentum (l = 0, s = 0), but the protons in each nucleus do have a
net spin angular momentum: l = 0, s = 1. Therefore the magnetic properties
of this material are due entirely to the protons in the nucleus.
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(a) What is the value of NAµ2
N /k?

(b) What is the value of the Curie constant for the magnetization of this
material? (Be careful! Remember that gspin 
= −2 for the proton, and so
the “ratio of integers” won’t be integers.)

(c) In a field of 1 T and at room temperature (295 K), what would be the
magnetic moment per mole of this material?

22. What is the Curie constant for a mole of a material whose molecular elec-
tron clouds have no spin--orbit coupling if (a) (l, s) = (0, 1/2), (b) (l, s) =
(1, 3/2), (c) (l, s) = (2, 0)?

23. What is the maximum molar magnetic moment for each substance in the
problem above?

24. Consider a system of 1024 spin-1/2 electrons at temperature 7 K. If they are
in a magnetic field of 5 T, what is the total magnetic moment of this electron
system?

25. Consider a system of 1025 electrons in an external magnetic field of 2 T.
Each electron is in an l = 1 orbit. There is strong spin--orbit coupling, so
that the only allowed combinations (lz, sz) are (1, 1/2), (0, 1/2), (0, −1/2),
(−1, −1/2). For this material, find (a) the Curie constant, (b) the magnetic
moment at 290 K, (c) the magnetic moment at 3 K.
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We now examine a remarkable tool called the “partition function,” which can
be used to simplify many calculations. We begin by recalling that when a small
system is interacting with a large reservoir, the probability for it to be in state s is
Ps = Ce−βEs and the mean value of any property f of the small system is given
by

f =
∑

s

fs Ps with Ps = Ce−βEs . (18.1)

Unfortunately, the sum over states can include a very large number of terms, and
the calculation must be repeated for each property f that we study.

The partition function facilitates these otherwise tedious calculations. To pro-
duce this function, we cannot avoid a sum over all states. However, once this sum
is done and the partition function is known, many different properties may be
calculated directly from it.

382
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A Definition

Requiring the sum of all probabilities to equal unity determines the constant C
in the expression 18.1: ∑

s

Ps = C
∑

s

e−βEs = 1.

Thus

Ps = 1

Z
e−βEs where Z =

∑
s

e−βEs . (18.2)

The sum on the right of 18.2 is called the “partition function” and is customarily
given the symbol Z, as indicated. As you can see, each term in this sum is
proportional to the corresponding probability. And the probabilities, in turn, are
proportional to the number of states accessible to the combined system (small
system plus reservoir). It is this relationship to the entropy that gives the partition
function its seemingly magical powers. It contains no new physics. It simply
makes calculations of mean values easier by providing automatically the correct
probability weightings.

Like all thermodynamic quantities, the partition function generally depends
on three variables, usually chosen to be T, V, N , where T is the temperature of
the reservoir, and V, N are the volume and number of particles for the small
system. The dependence on T is explicit in the exponential factor β = 1/kT but
the dependence on V and N is more subtle, influencing both the sum over states∑

s and the energy of each state, Es . Although the temperature does influence
the probabilities, it does not affect the energy of any one state.1 (For example,
the outer electron of an atom has only certain states available to it. At higher
temperatures there is a greater probability for the electron to be in an excited
state, but the energy of each state remains the same.) So if we were to rewrite the
partition function, indicating explicitly its dependence on the three variables, we
would have

Z (T, V, N ) ≡
∑

s(V,N )

e−β(T )Es (V,N ). (18.3)

B Calculation of mean values

We now look at some examples. Assume that we have already calculated the
partition function Z, so that we know its dependence on T, V, N . The partial
derivative with respect to any of these variables will imply that the other two are
held constant. Sometimes it will be more convenient to use β (= 1/kT) instead
of the variable T. As always, we will use the generic symbols p, V for all types
of mechanical interactions and µ, N for all types of particles.

1 Although there are exceptions to this statement (e.g., collisional broadening), it is generally correct.
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B.1 Internal energy

The average internal energy of the small system is given by

E =
∑

s

Ps Es = 1

Z

∑
s

e−βEs Es .

Noticing that

e−βEs Es = − ∂

∂β
e−βEs ,

we can write

E = − 1

Z

∂

∂β

∑
s

e−βεs = − 1

Z

∂ Z

∂β
= − ∂

∂β
ln Z . (18.4)

In a similar fashion, we can find the mean square of the internal energy:

E2 =
∑

s

Ps E2
s = 1

Z

∑
s

e−βEs E2
s

= 1

Z

∂2

∂β2

∑
s

e−βEs = 1

Z

∂2 Z

∂β2
. (18.5)

From these two results, 18.4 and 18.5, the standard deviation for the fluctuations of
the internal energy about its mean value can be calculated through the relationship
(homework)

σ 2 = E2 − E
2 = ∂2

∂β2
ln Z , (18.6)

and from equation 18.4 this becomes, using β = 1/kT ,

σ 2 = −
(

∂ E

∂β

)
V,N

= kT 2

(
∂ E

∂T

)
V,N

= kT 2CV . (18.6′)

B.2 Other properties of the system

The above examples exploit the partition function’s dependence on the temper-
ature T. Other calculations exploit its dependence on V and N. For these, we
first examine the differential form of the system’s Helmholtz free energy (9.15a),
which also depends on T, V, N :

dF = −SdT − pdV + µdN .

The bars indicate mean values because, like the internal energy, these properties
of the small system may fluctuate as it interacts with the reservoir. From this
expression, we see that

S = −
(

∂ F

∂T

)
V,N

, p = −
(

∂ F

∂V

)
T,N

, µ =
(

∂ F

∂ N

)
T,V

. (18.7)
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We now use this expression for S in the definition 9.14a of the Helmholtz free
energy:

F = E − T S = E + T

(
∂ F

∂T

)
V,N

⇒ F − T

(
∂ F

∂T

)
V,N

= E . (18.8)

With the help of equation 18.4 you can easily show that the solution to this
differential equation is a function of the form2

F = −kT ln Z + CT,

where C is a constant. The third law requirement that the entropy must go to zero
at T = 0,

S = −
(

∂ F

∂T

)
V,N

−→ 0 as T −→ 0,

demands that the constant C is zero (homework), and we conclude that the
Helmholtz free energy is related to the partition function by

F = −kT ln Z . (18.9)

So once we know the partition function, Z, we can use 18.9 this in 18.7 to find the
mean values of the entropy, pressure, and chemical potential of the small system.

Thus, with the independent variables T, V, N and equations 18.9, 18.4, and
18.7 (giving us F, E, S, p, µ) we have enough information to calculate nearly
any property.

Summary of Sections A and B

The partition function for a small system interacting with a large reservoir is defined

by (equation 18.2)

Z =
∑

s

e−βEs .

The partition function is particularly useful in calculating mean values. For example,

the mean value of the small system’s internal energy, the square of its internal

energy, and the standard deviation for fluctuations in energy are given by

(equations 18.4--18.6)

E = − ∂

∂β
ln Z , E2 = 1

Z

∂2 Z

∂β2
,

σ 2 = E2 − E
2 = ∂2

∂β2
ln Z .

2 For those who are well versed in differential equations, the first term, −kT ln Z , is a particular

solution to the complete equation 18.8 and the second term, CT , is the general solution to the

corresponding homogenous equation. Since we are holding V and N constant, the constant C can

be any function f (V, N ) that is independent of T.



386 Introduction to thermodynamics and statistical mechanics

From the differential form of the Helmholtz free energy (equation 9.15a)

dF = −SdT − pdV + µdN ,

we see that (equation 18.7)

S = −
(

∂ F

∂T

)
V,N

, p = −
(

∂ F

∂V

)
T,N

, µ =
(

∂ F

∂ N

)
T,V

.

Using the first of these in the definition of the Helmholtz free energy (F = E − T S),

we obtain a differential equation for F , whose solution is (equation 18.9)

F = −kT ln Z .

With the independent variables T, V, N and equations 18.9, 18.4, and 18.7 (giving

us F, E, S, p, µ) we have enough information to calculate virtually any property.

C Many subsystems and identical particles

C.1 Distinguishable subsystems

Suppose that a system consists of two distinct subsystems, A and B, as in
Figure 18.1. The energy of the combined system is the sum of the energies
of the two subsystems. Therefore,

Z =
∑

s

e−βEs =
∑
a,b

e−β(Ea+Eb ) =
∑

a

e−βEa
∑

b

e−βEb = Z A Z B .

Extending this result to three or more subsystems gives

Zcombined = Z A Z B ZC · · · (distinguishable subsystems). (18.10)

System A
has energy Ea
when in state a

System B
has energy Eb
when in state b

Combined system has energy Ea + Eb

Figure 18.1 The sum over all states of the combined system is the sum over the
states a of system A and the states b of system B. Consequently, the partition
function for the combined system is the product of the partition functions for the
subsystems.
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The partition function for the combined system is the product of those for the
subsystems.

C.2 Identical subsystems

We now look at identical subsystems. Examples would include identical
molecules in a gas, identical electrons in a semiconductor, identical nuclei in
a reactor, etc. If the subsystems are identical then the result 18.10 is not correct.
As we saw in subsection 6D.2, there are N ! different ways to arrange N distin-
guishable systems among any N states. But if the systems are identical, then all
N! arrangements are the same. For example, if systems A and B are identical,
then (system A in state 1, system B in state 2) would be identical to (system A in
state 2, system B in state 1). So rather than being two separate terms in our sum
over states, they should be just one.

You would think, then, that we could simply divide by N! to correct for this
over-counting. Unfortunately, it is not that simple. The factor N! applies only if
all N subsystems are in different states. If there is some overlap (i.e., more than
one system is in the same state), then this correction is too severe. For example.
there is only one way (not N!) that N distinguishable subsystems can be in the
same state.3 This problem of overlapping identical subsystems is better handled
using quantum statistics, as we will see in the next chapter.

Fortunately, there are large classes of important problems for which there is
little overlap among identical subsystems, so the correction factor N ! of classical
statistics is indeed correct. So we will proceed with this approach and note that
the results for Z, F, S, p, µ are strictly valid for identical subsystems only if they
are in different states -- that is, little or no overlap. With this correction, we have
for the sum over states∑

s

−→ 1

N !

∑
a

∑
b

∑
c

· · · (identical subsystems, no overlap),

so that

Z = 1

N !
Z A Z B ZC · · ·

Using Stirling’s formula,
1

N !
≈

( e

N

)N
,

we have the following result for a system consisting of N identical subsystems:

Z =
(

eζ

N

)N

(identical subsystems, no overlap) (18.11a)

where ζ is the partition function for any one of them:

ζ = Z A = Z B = ZC = · · · =
∑

i

e−βεi (one of the subsystems). (18.11b)

3 This might happen, for example, at low temperatures, where many systems might be in the ground

state.



388 Introduction to thermodynamics and statistical mechanics

If the energies and states accessible to each subsystem are not affected by the
other subsystems, we say that the subsystems are “independent.” For these, ζ

does not depend on N.
Equation 18.11a expresses the partition function for a system of N identical

systems or particles in terms of the partition function for just one of them. We
can do the same for the Helmholtz free energy by putting the result 18.11a for Z
into equation 18.9:

F = −kT ln Z = −NkT ln

(
eζ

N

)
(identical subsystems, no overlap). (18.12)

With this, we can use the formulas of Section B to obtain any property. For
example, the third of equations 18.7 gives the following chemical potential for
independent subsystems (homework):

µ =
(

∂ F

∂ N

)
T,V

= −kT ln

(
ζ

N

)
(independent identical particles, no overlap).

(18.13)

Summary of Section C

The partition function for a system is the product of the partition functions for its

individual distinguishable subsystems (equation 18.10):

Z = Z A Z B ZC · · · (distinguishable subsystems).

If the N subsystems are identical and there is little probability of that any of them are

in exactly the same state, then we must correct for N! identical permutations that are

included in the partition function sum 18.2, and the partition function becomes

(equation 18.11a)

Z =
(

eζ

N

)N

(identical subsystems, no overlap),

where ζ is the partition function for any subsystem (equation 18.11b),

ζ =
∑

i

e−βεi (one of the subsystems).

Similarly, the Helmholtz free energy for N identical subsystems is (equation 18.12)

F = −kT ln Z = −NkT ln

(
eζ

N

)
.

For independent subsystems, ζ is independent of N and (equation 18.13)

µ =
(

∂ F

∂ N

)
T,V

= −kT ln

(
ζ

N

)
(independent identical particles, no overlap).
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D The partition function for a gas

We are now able to calculate the partition function for a system that contains
identical subsystems in terms of the partition function of any one of them. We
will illustrate how to do this for the case of a gas that has N identical diatomic
molecules. Partition functions for other common (but simpler) systems can be
calculated in the homework problems.

D.1 The various degrees of freedom

The energy ε of a single molecule might be stored in translational (εt ), rotational
(εr ), and vibrational (εv ) degrees of freedom. It is also conceivable that some
energy could be stored in the excitation of electrons to higher energy levels (εe)
or in excited nuclear states (εn), and perhaps in other ways as well:

ε = εt + εr + εv + εe + εn + · · · .

In calculating the partition function for a single molecule, we would have to sum
over all these various kinds of states:

ζ =
∑

t,r,v,e,n,...

e−β(εt +εr +εv +εe+εn+···)

=
∑

t

e−βεt
∑

r

e−βεr
∑

v

e−βεv · · ·

= ζtζrζvζeζn · · · . (18.14)

That is, the partition function for the molecule can be separated into a product of
the partition functions for the different ways in which energy can be stored.

Some of these energy terms can be ignored. If we measure energies relative
to the ground state,4 the partition function for any degree of freedom becomes

ζ =
∑

i

e−βεi = e−0 + e−βε1 + e−βε2 + · · · .

If the energy of the first excited state is large compared to kT , then e−βε is
negligible for all excited states and so we can ignore this degree of freedom:5

ζ ≈ 1 + 0 + 0 + · · · = 1 (if ε1 � kT ). (18.15)

In the homework problems it can be shown that the temperature would have to
be thousands of degrees Kelvin for typical electronic excitations and billions of
degrees for nuclear excitations. Consequently, we can ignore these and expect only

4 Although convenient, it is not necessary to measure energies relative to the ground state. You may

choose any reference level you wish.
5 If the ground state is n times degenerate, the first term here will be n instead of 1. But the partition

function can always be changed by a constant factor without affecting any result obtained from it

(homework), so we make this constant factor equal to unity.
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translational, rotational, and possibly vibrational degrees of freedom to contribute
to the partition function:

ζ = ζ tζrζv (18.16)

D.2 The translational part

The translational part of the partition function, ζt , can be calculated by con-
verting the sum over translational quantum states to an integral, according to
equation 1.7: ∑

t

−→
∫

d3rd3 p

h3
.

Doing this gives (see Appendix E)

ζt =
∑

t

e−β p2/2m =
∫

d3rd3 p

h3
e−β p2/2m

= V

h3

∫
d3 p e−β p2/2m = V

(
2πmkT

h2

)3/2

. (18.17)

D.3 The rotational part

For a diatomic molecule with rotational inertia I (see subsections 1B.6 or 4C.1),

εr = L2

2I
, where L2 = l(l + 1) h2, l = 0, 1, 2, . . . (18.18)

The state with angular momentum quantum number l is 2l + 1 times degen-
erate, since there are 2l + 1 possible orientations of this angular momentum
(lz = 0, ±1, ±2, . . . , ±l). Therefore our sum over the rotational states r is given
by

ζr =
∑

r

e−βεr =
∑

l

(2l + 1)e−β h2l(l+1)/2I .

If kT is small compared with the energy needed for excitation, or equivalently
if T � Te,6 then the system is confined to the ground state and ζr = 1. But in
the other extreme, T � Te, the sum can be converted to an integral. Since the
angular momentum quantum number changes in units of 1 (�l = 1), we can
write

ζr =
∑

l

�l(2l + 1)e−β h2l(l+1)/2I ≈
∞∫

0

dl (2l + 1)e−β h2l(l+1)/2I .

6 As we saw in Chapter 4, excitation temperatures for molecular rotations are typically around 5 to

10 K. Even when confined to the rotational ground state, the translational motion of molecules

guarantees many more quantum states than particles and so we don’t have to worry about possible

overlap.
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This integral is simplified by using the substitution of variables

x = l(l + 1) = l2 + l with dx = (2l + 1)dl,

so that we have

ζr =
∞∫

0

dx e−β h2x/2I = 2I kT

h2
.

Thus the rotational contribution to a molecule’s partition function is as follows:

ζr =




∑
l

(2l + 1)e−β h2l(l+1)/2I always,

1 if T � Te,
2I kT

h2
if T � Te.

(18.19)

D.4 The vibrational part

We now examine the vibrations of atoms bound within a molecule. As we learned
in subsection 4B.1, for small displacements from equilibrium the potential energy
of any bound particle is that of a harmonic oscillator. In quantum mechanics we
learn that the energy of the nth level is given by (equation 1.18)

εn − ε0 = n hω, (18.20)

where energies are measured relative to the ground state energy ε0 and where
the angular frequency ω depends on the masses and binding strengths. With this
expression for the energies, the vibrational part of a molecule’s partition function
is

ζv =
∑

v

e−βεv =
∑

n

e−nβ hω.

This is a series of the form∑
n

an = 1 + a + a2 + a3 + · · · , where a = e−β hω,

which gives

1 + a + a2 + a3 + · · · = 1

1 − a
(a < 1), (18.21)

as can be easily demonstrated by multiplying both sides by 1 − a. Therefore, the
partition function for molecular vibrations is given by

ζv = 1

1 − e−β hω
. (18.22)

In the limit kT � hω (or T � Te) this gives ζv = 1, as expected, and in the other
limit, kT � hω (or T � Te), this gives ζv = kT/ hω (homework). That is,

ζv =




1

1 − e−β hω
always,

1 if T � Te,

kT /hω i f T � Te.

(18.23)
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Table 18.1. The partition function for a molecule of a diatomic gas

Degrees of freedom Contribution to ζ

Kind Number Te General For T � Te

translational 3 ≈ 0 K
∫

d3rd3 p

h3
e−β p2/2m V

(
2πmkT

h2

)3/2

= constant × V T 3/2

rotational 2 ≈ 10 K
∞∑

l=0

(2l + 1)e−β h2l(l+1)/2I

(
2I kT

h2

)2/2

= constant × T 2/2

vibrational 2 ≈ 1000 K
∞∑

n=0

e−nβ hω = 1

1 − e−β hω

(
kT

hω

)2/2

= constant × T 2/2

Figure 18.2 Plots of the
average rotational (left)
and vibrational (right)
energies per molecule as
a function of the
temperature for a
diatomic gas. The energy
is in units of kT and the
temperature is in units of
the excitation
temperature Te, which is
typically 5--10 K for
rotations and 1000--2000
K for vibrations.

For a typical diatomic molecule such as N2, the characteristic frequency ω is
about 2 × 1014 Hz, giving Te a value of about 1500 K.

D.5 The final result

Combining the results 18.11a, b and 18.16 we can write the partition function for
a gas of N identical diatomic molecules as

Z =
(

eζtζrζv

N

)N

, (18.24)

where our results for ζt , ζr , and ζv are summarized in Table 18.1. You can see that,
as long as T � Te, each degree of freedom, contributes a factor proportional to
T 1/2 to a molecule’s partition function. Consequently, for particles with ν degrees
of freedom,

ζ = ζ tζrζv = constant × V T ν/2
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and the partition function for the entire gas is given by

Z = C

(
V T ν/2

N

)N

(C is a constant). (18.25)

A monatomic gas would have no rotational or vibrational degrees of freedom.
When the temperature is not large compared with Te, we use the “general”

form of the partition functions, given in the fourth column of Table 18.1. Once we
have the partition function, the formulas of Section B will reveal any property we
wish. Figure 18.2 displays the results of this calculation for the average rotational
and vibrational energies of a diatomic molecule.

Summary of Section D

The partition function for a single molecule can be written as the product of

partition functions for the translational, vibrational, rotational, electronic, nuclear,

etc. degrees of freedom (equation 18.14):

ζ = ζ tζrζvζeζn · · · .
Whenever kT is small compared with the energy of the first excited state, or

equivalently whenever T � Te, we can ignore contributions from that degree of

freedom (equation 18.15):

ζ =
∑

i

e−βεi ≈ 1 + 0 + 0 + · · · = 1 (if kT � ε1).

Normally the excited electronic and nuclear states are inaccessible, so we need

only consider the translational, rotational, and possibly vibrational degrees of

freedom. Their contributions are listed in Table 18.1 for a diatomic gas whose

molecules have mass m, rotational inertia I, and fundamental frequency ω.

The partition function for a system of N identical molecules is (equation 18.24)

Z =
(

eζtζrζv

N

)N

.

Every degree of freedom makes a contribution to the partition function that is

proportional to T 1/2. If each molecule has ν degrees of freedom then the partition

function for a gas of N such molecules is given by (equation 18.25)

Z = C

(
V T ν/2

N

)N

(C = constant).

D.6 Examples

Now that we know the partition function for a gas, it becomes a useful tool for
calculating various properties. We illustrate with two examples.
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Example 18.1 If each molecule has ν degrees of freedom, what is the internal
energy of the gas?

Using 18.4 for E , 18.25 for Z, and the fact that β = 1/kT , we find

E = − ∂

∂β
ln Z = kT 2 ∂

∂T
ln

[
C

(
T ν/2

ρ

)N
]

= Nν

2
kT .

This result shows that with each of the Nν degrees of freedom of the gas is
associated an average energy of (1/2)kT , in agreement with the equipartition
theorem.

Example 18.2 Suppose that, for a certain gas, each gas molecule has three
translational and two rotational degrees of freedom only. What is the chemical
potential for this gas?

Using equation 18.13 for µ and Table 18.1 for ζ = ζ tζr gives

µ = −kT ln

(
ζtζr

N

)
= −kT ln

(
CV T 5/2

N

)
= −kT ln

(
CT 5/2

ρ

)
,

where ρ = N/V is the density of the molecules and the constant C is given by
(Table 18.1)

C =
(

2πmk

h2

)3/2 (2I k

h2

)
.

You might compare this with the more generic form 14.12, µ = −kT ln[ f (T )/ρ]
where f (T ) is a function of T.

Problems

Section A
1. A certain system has only two accessible states, the ground state, with energy

zero, and an excited state, with energy 1 eV. What is the value of the partition
function for this system at a temperature of (a) 300 K, (b) 30 000 K?

2. Consider a system at 290 K for which the energy of the nth state is En =
n(0.01 eV). Using 1 + a + a2 + a3 + · · · = 1/(1 − a) for a < 1 where nec-
essary, find
(a) the value of the partition function,
(b) the constant C in the expression Ps = Ce−βEs ,
(c) the probability that the system is in the n = 0 state,
(d) the average energy of the system, E ,
(e) the value of the partition function at a temperature of 100 K.

3. When interacting with a reservoir, the probability for a small system to be in
state s is Ps = Ce−βεs . See whether you can derive this result from the first
and second laws, without referring to Chapter 15.
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4. Show that the average energy of a system depends on the temperature, even
though the energies of the accessible states do not, by considering a system
with two accessible states having energies 0 and 0.1 eV, respectively.
(a) What is the probability for the system to be in the excited state at 300

K? At 600 K?
(b) What is the average internal energy of the system at each of these two

temperatures?
(c) Does the average energy increase with T, even though the energies of the

individual states do not?

Section B
5. Show that E2 = (1/Z )(∂2 Z/∂β2)V,N .

6. Show that the square of the standard deviation for the energy of a system inter-

acting with a reservoir, σ 2 = E2 − E
2
, is given by σ 2 = (∂2 ln Z/∂β2)V,N .

7. Using the chain rule, find how the derivative with respect to β = 1/kT con-
verts into a derivative with respect to T.

8. Using equation 18.4, prove that F = −kT ln Z is a solution to the differential
equation 18.8.

9. You are going to first show that any function of the form F = −kT ln Z +
f (V, N )T is a solution to equation 18.8. Then using equation 18.7a (S =
−(∂ F/∂T )V,N ) you will show that the third law (S → 0 as T → 0) demands
that f (V, N ) = 0. To do this, show that:
(a) Any function F of the above form is a solution of equation 18.8.
(b) S = − f (V, N ) + k ln Z + kT (∂ ln Z/∂T )V,N .
(c) As T → 0, Z → 1 and therefore k ln Z → 0. (Measure all energies rel-

ative to the ground state. You may wish to write out the first few terms
in Z to see what happens as T → 0.)

(d) As T → 0, kT (∂ ln Z/∂T )V,N → 0. (Hint: Write ∂ ln Z/∂T = (1/Z )
∂ Z/∂T and express Z explicitly as a sum. Then use l’Hospital’s rule
to find the limit of terms of the form e−x x as x → ∞.)

Combining the answers to parts (b), (c), and (d), show that f (V, N ) = 0 and
therefore that F = −kT ln Z .

10. For a certain system there is only one accessible state and it has energy
Es = −CVT2, where C is a constant and V is the volume. Find the following
in terms of T, V, N : (a) the partition function, (b) the average pressure, using
the second of equations 18.7 and equation 18.9.

(In real systems, the energies of the states do not usually depend on the
temperature of the reservoir, but we ignore this in these examples.)

11. For a certain system, there is only one accessible state and it has energy
E = −NkT ln(V/V0), where V0 is a constant. Find the following in terms
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of T, V, N (use equations 18.7 and 18.9): (a) the partition function, (b) the
average pressure, (c) the average chemical potential.

12. Repeat the above problem for a system with many states. The energy of state
s is given by Es = fs(T ) − NkT ln(V/V0), where V is the volume, V0 is a
constant, and fs(T ) is some function of the temperature only that depends
on the state s.

13. For a certain system, the energy of each state s is given by

Es = kT[(Cs + (3/2)N ln(β/β0)−N ln(V/V0)],

where β0 and V0 are fixed constants and Cs is a constant whose value depends
on the state. Calculate the following for this system in terms of T, V, N :
(a) the partition function, (b) the average internal energy, (c) the average
pressure, (d) the average chemical potential, (e) the standard deviation σ for
fluctuations in internal energy, (f) the average entropy.

14. The partition function for a certain system is given by Z =
(β/β0)−3N eN (V/V0), where β0, V0 are constants. Find the following as a func-
tion of T, V, N : (a) the average internal energy, (b) the standard deviation
of the energy fluctuations, (c) the Helmholtz free energy, (d) the entropy,
(e) the pressure, (f) the chemical potential.

Section C
15. System A contains one particle, x. System B contains two particles, y and z.

The three particles are distinguishable. Each of these systems has the same
two accessible single-particle states. How many different states are accessible
to (a) system A, (b) system B, (c) the combined system?

16. In how many different ways can you arrange three different particles among
three different boxes, with no more than one per box, if the particles are
(a) distinguishable, (b) identical?

17. In how many different ways can you arrange three particles among four
different boxes, with no more than one per box if the particles are:
(a) distinguishable, (b) identical?

18. The results of Section C in the main text are not correct if there is a significant
probability that two systems will occupy the same state simultaneously.
Show this for the following simple case. Suppose that there are two
subsystems (i.e., two particles) and the same two accessible states for each
(i.e., two “boxes”). If both subsystems may occupy the same state, how many
different arrangements of the system are there if the two subsystems are (a)
distinguishable, (b) identical? (c) Do these two answers differ by a factor 2!.

19. Repeat the above problem for (a) two particles and three states, (b) two
particles and 100 states. (c) For which of these two cases do the two answers
differ by a factor that is closer to 2!?
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20. Consider a system, at temperature 400 K, consisting of 1000 molecules,
each having only two accessible states, with energies ε0 = 0 and ε1 = 0.1
eV, respectively. Find
(a) the probability for a molecule to be in the excited state,
(b) the average energy of the system.

21. Consider a system of N identical molecules, each having only two accessible
states, with energies ε0 = 0 and ε1 = 0.05 eV, respectively. Give the follow-
ing as a function of (T, V, N ): (a) the partition function, (b) the Helmholtz
free energy, (c) the chemical potential.

22. Derive µ = −kT ln(ζ/N ) from equations 18.7, 18.9, and 18.11.

Section D
23. Find the excitation temperature for

(a) electronic excitation if the first excited state is 0.3 eV above the ground
state,

(b) nuclear excitation if the first excited state lies 0.2 MeV above the ground
state.

24. Do the integrals in equation 18.17 to see whether you get the stated results.
For integration over the momenta, you may wish to use spherical coordinates
and the tables of integrals in Appendix E.

25. Electrostatic interactions with neighbors cause atoms in solids to be held in
place as if bound together by tiny springs. The excitation temperature for
vibrations in many metals is around 200 K.
(a) If the mass of a metal atom is 2.0 × 10−25 kg, what is a typical value for

the force constant κ (Fspring= −κx) with which the atoms are bound in
place?

(b) Show that the series 1 + a + a2 + a3 + · · · converges to 1/(1 − a) for
|a| < 1.

(c) For a harmonic oscillator in three dimensions, the energies of the var-
ious excitation levels, measured relative to the ground state, are given
by ε − ε0 = (nx + ny + nz) hω, where nx , ny, nz are integers that indi-
cate the level of excitation for oscillations in each of the three dimen-
sions. In terms of β hω, what is the partition function for such an
oscillator?

(d) What is the average energy of an oscillator in terms of ω and T?

26. Using the results 18.4, 18.5, 18.7, 18.9, and 18.25, find the average values
of the following properties of a monatomic gas as functions of T, V, N :

(a) E, (b) S, (c) p, (d) µ, (e) E2 − E
2
.

27. The oxygen (O2) molecule is composed of two oxygen atoms, each with mass
of 2.7 × 10−26 kg and a center-to-center separation 1.24 × 10−10 m. For this
molecule, find
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(a) the rotational inertia I about the perpendicular bisector of the line joining
the two atoms,

(b) the energy of the first excited (l = 1) rotational state,
(c) the rotational excitation temperature.

28. The first line of equation 18.19 expresses the partition function for the rota-
tional degrees of freedom of a diatomic gas molecule, for all temperatures,
in terms of a sum. Using this, find the general expression for the average
energy per molecule stored in the rotational degrees of freedom as a function
of I and T .

29. The vibrations of an oxygen molecule have a characteristic frequency ω of
about 2.98 × 1014 Hz. For this molecule, what is
(a) the energy of the first excited vibrational state,
(b) the vibrational excitation temperature?

30. The partition function for the vibrational degrees of freedom at all tempera-
tures for a single molecule is given by equation 18.22. Using equation 18.4,
find the average energy per molecule stored in the vibrational degrees of
freedom as a function of ω and T , for all values of T.

31. From equation 18.22 show that ζv = kT/hω for T � Te.

32. Using equation 18.4 and the values of ζt , ζr , and ζv listed in Table 18.1,
calculate the values of the average energy per molecule for each of these
modes in the high-temperature limit. How does each of these compare with
(ν/2)kT , where ν is the number of degrees of freedom in that mode?

33. Using Er = L2/2I , derive the result 18.19 for the case T � Te.

34. Consider the monatomic gas argon, whose atoms each have mass 6.68 ×
10−26 kg and which is at standard temperature and pressure (273 K, 1.013 ×
105 Pa). With the help of equations 18.13 and 18.17, calculate the value of
the chemical potential in units of eV. (Hint: For V / N, use the ideal gas law
V/N = kT/p.)

35. Consider the ideal monatomic gas of the above problem. Using equations
18.7, 18.12, and 18.17:
(a) show that S = Nk ln(ζ/N) + (5/2)Nk.
(b) with the result (a) and equation 18.13, show that for this (ideal) gas,

E = TS − pV + Nµ.

(c) What is the molar entropy of this gas in units of J/(K mole)?
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We now shift our attention from classical to quantum statistics. As a brief review,
recall that in both approaches we are considering a small system interacting with a
large reservoir (Figure 15.1). The probability P for any particular configuration is
proportional to the number of accessible states, �, which is related to the entropy
through the definition S ≡ k ln �. Thus

P ∝ � = eS/k .

We calculate the probability for the small system to be in any particular state by
the effect that this would have on the entropy of the reservoir. If it would remove
�E, �V , �N from the reservoir then the probability for it to be in this state is
related to the change in the reservoir’s entropy by (equation 15.2)

P = Ce�S/k = Ce−β(�E+p�V −µ�N ),

where C is a constant of proportionality and β = 1/kT . The two most common
ways of applying this result depend on our “small system” (Figure 15.2).

� In classical statistics the small system is a single particle (or group of particles) that

could be in any of various different states.

401
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� In quantum statistics the small system is a single state that could be occupied by

various numbers of particles.

The properties of systems depend on two things. In classical statistics they
are:

� the spectrum of accessible states;
� The probability Ps for the small system to be state s.

In quantum statistics, they are:

� the spectrum of accessible states;
� the average number of particles in each (the “occupation number,” n).

In both approaches the spectrum of accessible states is the more elusive of the
two ingredients. It depends on the system and the kinds of particle that are in it.

However, the other ingredient in both approaches is simple and universal. We
have already derived it for the case of classical statistics (equation 15.5):

Ps = Ce−βεs ,

where εs is the energy of state s. In the preceding chapters we have shown how
to use this result in the study of many common systems.

Now, in this chapter, we turn our attention to the quantum approach. We will
first derive the expression for the occupation number of a quantum state and then
show how to use it to study the properties of various common systems.

A The occupation number

A.1 General

According to the result 15.6, the probability that a certain state contains n particles
is1

Pn = Ce−nβ(ε−µ), where C = 1∑
ne−nβ(ε−µ)

and where ε is the energy of a particle in that state. It is more convenient to write
this as

Pn = Ce−nx , where x = β (ε − µ) and C = 1∑
ne−nx .

The average number of particles occupying the state, the occupation number, is
given by

n =
∑

n

n Pn = C
∑

n

ne−nx . (19.1)

1 This is equation 15.2 with �V = 0, because the volume of a quantum state is fixed.
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We now use the trick that

ne−nx = − ∂

∂x
e−nx

to write

n = 1∑
ne−nx

(∑
nne−nx

)
= − 1∑

ne−nx

(
∂

∂x

∑
n

e−nx

)

= − ∂

∂x
ln

(∑
n

e−nx

)
. (19.2)

A.2 Fermions and bosons

The problem is now reduced to evaluating the sum
∑

n e−nx in equation 19.2. For
Nature’s most fundamental particles there are only two possibilities.

� For fermions, no more than one particle may occupy a given state, so the sum becomes

1∑
n=0

e−nx = 1 + e−x ,

and the occupation number of a state for fermions is given by

nfermions = − ∂

∂x
ln(1 + e−x ) = 1

ex + 1
, where x = β(ε − µ). (19.3a)

� For bosons any number may occupy a state, so the sum over n goes from 0 to ∞. As

long as x is positive this series converges, according to equation 18.21:

∞∑
n=0

e−nx = 1 + e−x + e−2x + · · · = 1

1 − e−x
.

So equation 19.2 gives the following result for the occupation number of a boson state:

nbosons = − ∂

∂x
ln

(
1

1 − e−x

)
= 1

ex − 1
, where x = β(ε − µ). (19.3b)

As you can see from Equations 19.3a, b, the occupation numbers for fermion
and boson states differ only by the sign within the denominator. This similarity
sometimes makes it convenient to work problems for both types of particles
simultaneously, using

n = 1

eβ(ε−µ) ± 1
with

{+ for fermions,

− for bosons.
(19.3)

The two forms reflect the two major subdivisions of quantum statistics, called
Fermi--Dirac and Bose--Einstein statistics, respectively. In neither case does the
occupation number tell us anything about the accessible states. It simply tells us
the average number of particles that would be in a state with energy ε, if such a
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1

eb(e−m) + 1
n (e) = 

1

eb(e−m) − 1
n (e) = 

1

fermions bosons

T1

T1T2
T2

e e
m m0 0

1
2

Figure 19.1 Plot of
occupation number vs.
energy at a low
temperature T1 and a high
temperature T2, for
fermions and bosons.

state exists. Figure 19.1 shows how these occupation numbers vary with energy
at high and low temperatures.

Although the two subdivisions of quantum statistics discussed above are both
very fundamental and very important, equation 19.2 can be applied to other kinds
of systems as well. For example, suppose that a certain type of large molecule
may have between 0 and m identical atomic groups attached, each with binding
energy ε (e.g., oxygen to hemoglobin, nitrates to an enzyme, or hydroxides to a
catalyst). In such cases the sum would go from 0 to m, and equation 19.2 would
tell us the average number of atomic groups attached to each large molecule.

A.3 Fluctuations

In addition to the average number of particles occupying a quantum state, we
may also be interested in a measure of the fluctuations: this is provided by the
standard deviation

σ 2 = �n2 = n2 − n2.

Using the notation of the previous section,

n2 =
∑

n

n2 Pn = C
∑

n

n2e−nx = 1∑
ne−nx

(
− ∂

∂x

)2 ∑
n

e−nx

and, with the help of equation 19.2, this can be turned into (homework)

�n2 = n2 − n2 = − ∂

∂x
n = n ∓ n2,

where the minus sign applies to fermions and the plus sign to bosons. That is, the
fluctuation in the occupation number of a quantum state is given by

�n2 =
{

n(1 − n) for fermions,
n(1 + n) for bosons.

(19.4)

You can see that fermions would only experience significant fluctuations
near the transition around ε ≈ µ, where the occupation number n ≈ 1/2
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(Figure 19.1). Below and above this region n ≈ 1 and n ≈ 0, respectively, so
the fluctuations would be small. In contrast, you can see that the fluctuation for
bosons,

√
n(1 + n), is larger than the occupation number itself, so large fluctua-

tions should be expected.

Summary of Section A

If the energy per particle in a given quantum state is ε then the average number of

particles occupying that state, the “occupation number” of that state, is given by

(equation 19.2)

n =
∑

n

n Pn = 1∑
n e−nx

∑
n

ne−nx = − ∂

∂x
ln

(∑
n

e−nx

)
,

where x = β(ε − µ). To evaluate the sum
∑

n e−nx , we need to know the maximum

number of particles that could occupy the state. For the important case of

fundamental particles, Nature provides only two possibilities, as follows.

Fermions have half-integer spin quantum numbers and obey Fermi--Dirac

statistics. No two identical fermions may occupy the same quantum state, so the sum

has just two terms, n = 0 and n = 1. Bosons have integer spin quantum numbers

and obey Bose--Einstein statistics. Any number of identical bosons may occupy the

same quantum state, so the sum goes from n = 0 to n = ∞. Performing these sums

and taking the indicated derivative (19.2) gives the following result (equation 19.3)

for the respective occupation numbers:

n = 1

eβ(ε−µ) ±1
with

{+ for fermions,

− for bosons.

A measure of the fluctuation in the number of particles occupying a quantum state is

(equation 19.4)

�n2 = n2 − n2 =
{

n(1 − n) for fermions,

n(1 + n) for bosons.

B Comparison with classical statistics

B.1 How they differ

You might think that quantum statistics could be easily derived from classical
statistics. Shouldn’t the average number of particles in any quantum state s be
the product of the number of particles N times the probability Ps for a particle
to be in that state? That is, shouldn’t we have

nclassical = NPs = NCe−βεs , with C = 1∑
se−βεs

? (19.5)

This reasoning is indeed correct, but only if the particle densities in phase space
are small.
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Figure 19.2 Occupation
number n vs. energy for
boson, classical, and
fermion systems, for a
given temperature and
chemical potential. At
high energies, where the
occupation numbers are
small, all three are nearly
the same. But they differ
at low energies where
occupation numbers are
larger.

To show this, we will look at quantum statistics for bosons and fermions in
the region of high energies and small occupation numbers, where eβ(ε−µ) � 1.
Then, for each state,

nquantum = 1

eβ(ε−µ) ±1
≈ e−β(ε−µ) = eβµe−βε. (19.6)

Because the total number of particles is the sum of the number in each state, we
can write

N =
∑

s

ns ≈
∑

s

e−β(εs−µ) = eβµ
∑

s

e−βεs

⇒ eβµ = N∑
s e−βεs

.

Putting this expression for eβµ into equation 19.6 shows that it is the same as
Equation 19.5. So, indeed, in the region of relatively high energies and low occu-
pation numbers both classical and quantum approaches give the same result
(Figure 19.2):

nclassical ≈ nbosons ≈ nfermions ≈ e−β(ε−µ), for ε − µ � kT .

However, for states of lower energy and higher occupation number, we cannot
ignore the 1 in the denominator of 19.6 in comparison with eβ(ε−µ). For these
states, the classical and quantum results all differ:

1

eβ(ε−µ) − 1
> e−β(ε−µ) >

1

eβ(ε−µ) + 1
(19.7)

⇒ nbosons > nclassical > nfermions.

B.2 Why they differ

To understand physically why the classical and quantum results differ for states
with higher occupation numbers, consider the distribution of two particles
between two states. As illustrated on the left in Figure 19.3, there are four such
configurations for distinguishable particles, two with only one particle per state
(single occupancy) and two where one state has both particles (double occupancy).
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Distinguishable
particles

single
occupancy

double
occupancy

Bosons Fermions ΩfermionsΩbosonsΩD Ωcl =
ΩD

2!

2 2

2

0 1

11 1

Figure 19.3 The possible
arrangements of two
particles between any two
states (empty states are
not shown) for the cases
of distinguishable
particles (�D), identical
bosons (�bosons), and
identical fermions
(�fermions). In the first
three columns on the
right the numbers of
different states are given
for each case. The
predictions of the
corrected classical
formula �cl = �D/2! are
also given, in the final
column on the right. For
identical particles with
single occupancy, the
number of states in all
three cases is correctly
predicted by the corrected
classical formula. But for
double occupancy, there
are two configurations for
bosons, one for the
corrected classical
prediction, and none for
the fermions. This is a
simple example of the
more general statement
that for single occupancy
all three approaches
agree, but for multiple
occupancy �bosons> �cl >

�fermions = 0.

But if the particles are identical, we must correct for the duplicate counting
of identical configurations, and also in the case of fermions, we must ensure that
no two particles occupy the same state. For duplicate counting, classical statistics
uses the correction factor 1/N ! (subsection 6D.2, Figure 6.4). In the present
example, with two particles, the correction factor 1/2! reduces the number of
distinguishable states from four to two, one with single occupancy and one with
double occupancy. As illustrated in Figure 19.3 and Table 19.1, the classical
prediction is correct for the configurations of single occupancy, but not for those
of double occupancy, being too small for bosons and too large for fermions.

Figure 19.4 displays the corresponding analysis for the distribution of three
particles between any set of three states. In the homework problems this can be
done for other cases (two particles in three states, etc.). In each case, we find
that the classical approach agrees with the quantum approach as long as there
is no more than one particle per state. But for states of multiple occupancy, the
classical prediction is too small for bosons and too large for fermions.

Of course, real systems might have more like 1024 identical particles and
perhaps 101024

states. But the same ideas that apply to small systems carry over
into these larger systems. In the lower-energy states, with higher occupation
numbers, the three approaches differ. Compared with the classical prediction,
identical bosons have more states with multiple occupancy, so the average number
of particles per state is larger. Conversely, fermions have zero states with multiple
occupancy, so the average number of particles per state is correspondingly lower.

Table 19.1. Summary of the number of different configurations for two particles
in two states

Identical particles
Distinguishable
particles classical bosons fermions

Single occupancy 2 1 1 1
Double occupancy 2 1 2 0

Total configurations 4 2 3 1
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Figure 19.4 Illustration of the possible arrangements of three particles between any
three states (empty states are not shown), for the cases of distinguishable particles
(�D), identical bosons (�bosons), and identical fermions (�fermions). In the first three
columns on the right, the numbers of states are given for each case. The predictions
of the corrected classical formula �cl = �D/3! are also given, in the final column on
the right. For identical particles with single occupancy, all three approaches agree,
but for the cases of multiple occupancy, �bosons> �cl> �fermions = 0.
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C The limits of classical statistics

In the preceding section we learned that the classical approach is valid only if there
is little likelihood of two or more identical particles trying to occupy the same
state. The condition for the validity of classical statistics, then, is low particle
densities in six-dimensional phase space (Figure 19.5):

number of quantum states � number of particles

⇒ Vr Vp

h3
� N . (19.8)

If the characteristic separation between particles is r and the characteristic range
in momentum is p then

Vr ≈ Nr 3 and Vp ≈ p3,

so inequality 19.8 becomes

r 3 p3

h3
� 1.

By taking the cube root of both sides and using the equipartition theorem to
express the momentum in terms of temperature (p2/2m ≈ (3/2)kT), this criterion
for the validity of the classical approach becomes

r p

h
� 1 with r ≈

(
V

N

)1/3

and p ≈
√

3mkT . (19.9)

Summary of Sections B and C

For states with low occupation numbers, where there is little likelihood that two

identical particles will try to occupy the same state, the classical, Bose--Einstein, and

Fermi--Dirac statistics all give the same result for the occupation number of a state:

nclassical ≈ nbosons ≈ nfermions ≈ e−β(ε−µ), for ε − µ � kT .

But in states of lower energy and higher occupation number, the three approaches

differ (equation 19.7):

nbosons > nclassical > nfermions.

Because the classical approach works for low particle densities, the criterion for the

validity of the classical approach is (equation 19.8)

Vr Vp

h3
� N .

If r is the characteristic separation between particles and p the characteristic range

in momentum for each, then this criterion for the validity of the classical approach

becomes (equation 19.9)

r p

h
� 1 with r ≈

(
V

N

)1/3

and p ≈
√

3mkT .
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Figure 19.5 The classical
approach works when
particle separations in
phase space are large
compared with the
dimensions of the
individual quantum
states, so that there is
little chance that more
than one particle will
occupy the same state.

D The spectra of accessible states

D.1 Overview

Of the two things that are needed to understand the behaviors of quantum systems,
we now know one, the occupation number n (equations 19.3a, b). Consequently,
the success or failure of our endeavors hinges on our understanding of the other
ingredient, the spectrum of accessible states. This varies from one system to the
next and is the object of intensive experimental and theoretical research.

The two ingredients usually combine in such a way that the experimental data
determine the type of theoretical model that is most appropriate and the theoretical
model, in turn, helps us to extrapolate our knowledge into areas beyond the data.

Many very interesting systems can be treated as quantum gases using the tools
of the next chapter. These include not only ordinary gases and plasmas but also
photons in an oven, vibrations in a solid, conduction electrons and holes, some
types of condensed matter, and stellar interiors.

Other important cases include systems of particles that are tightly bound. For
these the neighboring states may be widely separated, so that the occupation num-
ber changes considerably from one state to the next. Some systems are hybrids,
having both discrete and continuous components. For example, electrons in stellar
atmospheres have discrete states when bound to atoms, but a continuum of states
when free. We will also study systems whose states come in bands separated by
gaps.

Whether occupation numbers change smoothly or abruptly between neigh-
boring states depends on how the spacing between states compares with kT .
There are some materials whose properties vary continuously at normal temper-
atures but show discrete changes, or “quantum effects,” at very low temperatures
where kT is small. Examples include the transition to superconductivity dis-
played by some conductors and the transition to superfluidity displayed by liquid
helium.
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D.2 Summing over states

If we know the distribution of quantum states as a function of their energies ε we
can determine important features of the system directly. For example, the total
number of particles in a system would be the sum of the particles in each state,
and the total internal energy of the system would be the sum of the energies
of the particles in each state. Calculating the mean value of a property f using
classical statistics would require summing over states, weighting each value by
the probability of being in that state. Thus we have

N =
∑

s

ns, E =
∑

s

nsεs, f =
∑

s

Ps fs . (19.10)

In order to do these sums, however, we must know the spectrum of states to be
summed over.

For very small systems of one or a few particles in bound states, the states
are discrete and can be summed individually. But for larger systems, or systems
whose particles are not bound, the various energy levels are highly degenerate
and extremely closely spaced. For these, the sum over states must be replaced by
continuous integration: ∑

s

−→
∫

g(ε)dε,

where g(ε) is the density of states (subsection 1B.5). For example, the equations
in 19.10 for the total number of particles and the total internal energy of the
system would become

N =
∫

g(ε)n(ε)dε, E =
∫

g(ε)n(ε)εdε. (19.11)

The differential form of 19.11 tells us how many particles or how much energy
is stored in the states that lie in energy increment dε:

dN = g(ε)n(ε)dε, dE = g(ε)n(ε)εdε. (19.12)

The corresponding distributions (per unit energy increment) are

dN

dε
= g(ε)n(ε),

dE

dε
= g(ε)n(ε)ε. (19.12′)

E The chemical potential

E.1 General

All calculations in quantum statistics involve the chemical potential µ, which
appears in expressions 19.3a, b for the occupation number. Its value is determined
by what we know about the system. For example, equation 14.2 expresses µ in
terms of energy, volume, and entropy per particle. Alternatively, we could find µ
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Figure 19.6 Plots of
occupation number n vs.
the energy ε of a state for
fermions (left) and
bosons (right), each for
two different values of the
chemical potential µ. A
system with more
particles would have a
higher chemical potential
in order to accommodate
the additional particles.
Hence, one way of
determining the chemical
potential is to insist that it
should give the correct
number of particles for
the system.

by insisting that the total number of particles is the sum of those in the individual
quantum states (Figure 19.6):

N =
∑

s

ns =
∑

s

1

eβ(εs−µ) ± 1
. (19.13)

This is an implicit equation that can be solved for µ in terms of N and T . As
we will soon see, the solution is rather easy for systems in the limits of low and
high particle densities. But in general we have to be creative in determining µ,
choosing methods appropriate to the particular system we study.

E.2 Low- and high-density limits

We will now solve equation 19.13 in the limits of low and high particle densities
(in six-dimensional phase space). In subsection B.1 of this chapter we saw that
in the “classical” limit of low particle densities, the exponential dominates. The
chemical potential is then found from

eβµ = N∑
se−βεs

⇒ µlow densities = kT ln


 N∑

se−βεs


. (19.14)

Notice that we need to know the spectrum of accessible states in order to do the
sum.

The opposite limit of high particle densities is even simpler. In fact, nearly
all properties of a degenerate system, i.e., one confined to the configuration of
lowest energy (subsection 9H.2 and Figure 9.8), are easy to study. For bosons we
don’t even need to know the spectrum of accessible states. All are in the very
lowest state, so none of the other states matter.
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Because degenerate bosons are all in the one lowest state, the occupation
number of that state would be N ,

N = n0 = 1

eβ(0−µ) − 1
(degenerate bosons).

We can solve this for the chemical potential, getting

µdegenerate bosons = −kT ln

(
1 + 1

N

)
≈ − kT

N
. (19.15)

Fermions require a little more insight, because in a system of N identical
fermions2 the lowest N states are occupied and all those above are empty. So a
knowledge of the spectrum of accessible states -- at least the low-energy ones
which are occupied -- is helpful in understanding the system.

For degenerate fermions, all states are filled up to the Fermi surface, εf. As
seen in Figures 19.1 or 9.8, this is equal to the chemical potential at T = 0:3

µT =0 = εf = Fermi-surface energy. (19.16)

Each quantum state has a volume h3 in phase space, so a system of N degenerate
fermions occupies a volume Nh3. We can use this fact to estimate the momentum
and kinetic energy of the particles at the Fermi surface via4

Nh3 = Vr Vp ≈ V p3
f .

This gives

pf ≈ h

(
N

V

)1/3

,

so that

µdegenerate fermions = εf = p2
f

2m
≈ h2

2m

(
N

V

)2/3

. (19.17)

One thing you should notice about this result is that the chemical potential
depends on the particle density N/V in position space. The greater the density,
the higher the Fermi surface. A system of degenerate fermions occupies a fixed
volume Nh3 in six-dimensional phase space. So the more we constrain them in
position space (smaller Vr ), the more room they need in momentum space (larger
Vp).

Many common fermion systems remain nearly degenerate at surprisingly high
temperatures. As we have seen, the width of the tail in the fermion occupation

2 Being “identical” includes having the same spin orientation.
3 For nonzero temperatures, the chemical potential in fermion systems is called the “Fermi level.”
4 We have expressed the volume in momentum space as Vp ≈ p3

f , which is roughly correct, but the

exact relationship depends on the spectrum of accessible states. For example, in the next chapter

we will find that for unconstrained momenta, as in a gas, the volume would be that of a sphere,

Vp = (4/3)πp3
f . Here we use the p=0 state as our zero energy reference level.



414 Introduction to thermodynamics and statistical mechanics

number (i.e., the region where it goes from nearly 1 to nearly 0) is very roughly
kT . So a system of fermions will remain mostly in the lowest possible states until
the temperature reaches the point where thermal energies are comparable with
ε f :

fermions are degenerate if
3

2
kT � εf. (19.18)

In the homework problems, you will demonstrate that the Fermi surface for
conduction electrons in a typical metal may correspond to a thermal temperature
of over 100 000 K. And for electrons in collapsed stars or nucleons in a nucleus
the Fermi surfaces correspond to more than a billion kelvins!

Summary of Sections D and E

The spectrum of accessible states is the subject of great experimental and theoretical

interest. When combined with the occupation number, it determines the properties

of a system.

The states of some systems are those of a quantum gas. Others come in bands.

Some are discrete and widely separated, so that occupation numbers very greatly

from one state to the next. Some are hybrids of the above. Whether the occupation

number varies smoothly or abruptly between neighboring states depends on whether

kT is large or small compared with the spacing of the states. The properties of some

systems vary smoothly at high temperatures but display abruptly changing quantum

effects at low temperatures. A “degenerate” system is one confined to the

configuration of lowest possible energy.

The total number of particles in a system is the sum of the particles in each state,

and the total internal energy of the system is the sum of the energies of the particles

in each state. Calculating the mean value of some property f also requires summing

over states, weighting each value by the probability of being in that state. Thus we

have (equations 19.10)

N =
∑

s

ns, E =
∑

s

nsεs, f =
∑

s

Ps fs .

For large numbers of accessible states, we often describe their distribution in

energy by the density of states g(ε). The distribution of particles is the product of

the density of states times the average number of particles in each, and the

distribution of energy is the product of the density of states times the average energy

in each state (equation 19.12′):

dN

dε
= g(ε)n(ε),

dE

dε
= g(ε)n(ε)ε.

Although the occupation number n(ε) has the same universal form for all systems

(equations 19.3), the density of states g(ε) varies from one system to the next.
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All calculations involve the chemical potential, which appears in the occupation

number n. How we determine its value depends on what we know about the system.

One method is to ensure that the total number of particles is the sum of those in the

individual quantum states (equation 19.13):

N =
∑

s

ns =
∑

s

1

eβ(εs−µ) ± 1
.

This is an implicit equation that can be solved for µ in terms of N and T .

For degenerate identical bosons all N particles are in the single lowest state, so

the occupation number of that state would be N . From this we find that the chemical

potential for a system of N degenerate bosons at temperature T is given by

(equation 19.15)

µdegenerate bosons = −kT ln

(
1 + 1

N

)
≈ − kT

N
.

For a degenerate system of identical fermions, the lowest N states are filled up to

the Fermi surface, which is equal to the chemical potential at absolute zero

(equation 19.16):

µT =0 = εf = Fermi-surface energy.

Because the N identical fermions occupy a fixed volume Nh3 in phase space, the

volumes they occupy in position and momentum space are related. The smaller the

one, the larger the other. With small variations depending on the system, the energy

and momentum of the Fermi surface are related to the particle density in position

space through (equation 19.17)

p f ≈ h

(
N

V

)1/3

or εf ≈ h2

2m

(
N

V

)2/3

.

Fermions remain fairly degenerate until thermal energies are comparable to the

energy of the Fermi surface.

Problems

Section A
1. At room temperature (295 K), find the occupation number for a fermion

state that is (a) 0.01 eV below µ, (b) 0.01 eV above µ, (c) 0.1 eV below µ,
(d) 0.1 eV above µ.

2. At room temperature (295 K), find the occupation number for a boson state
that is (a) 0.01 eV above µ, (b) 0.1 eV above µ, (c) 1.0 eV above µ.

3. Is it possible for a boson to have the z-component of its angular momentum
equal to (1/2) h?
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4. A certain state lies 0.004 eV above the chemical potential in a system at
17 ◦C. What is the occupation number for this state if the system is composed
of (a) fermions, (b) bosons?

5. For a temperature of 300 K, compute the ratio nbosons/ nfermions for ε − µ

equal to (a) 0.002 eV, (b) 0.02 eV, (c) 0.2 eV, (d) 2.0 eV.

6. A certain quantum state lies 0.1 eV above the chemical potential. At what
temperature would the average number of bosons in this state be (a) 5,
(b) 0.5, (c) 0.05?

7. The hydrogen atom is made of two spin-1/2 particles, a proton and an
electron.
(a) When the electron is in an s-orbital (i.e., an orbital with l = 0), what are

the possible values of the total angular momentum quantum number j
for the atom? (Hint: J = L + S. Think about the z-component.)

(b) When the electron is in an orbital of angular momentum L = √
2 h, what

are the possible values of the total angular momentum quantum number
j for the atom?

(c) The atmosphere of a certain star is atomic hydrogen gas. Would this be
a boson or a fermion gas?

(d) Deeper down toward the star’s violent interior, the hydrogen atoms
are stripped of their electrons. Would the leftover protons be a gas of
bosons or fermions? Would the stripped electrons be a gas of bosons or
fermions?

8. (a) Draw a plot of n versus ε, showing how it would look in the limits of
extremely high and extremely low temperatures. Assume that the chemical
potential doesn’t vary with temperature. (In a later problem, it will be seen
that this is a bad assumption.) Do this for (a) bosons, (b) fermions.

9. Suppose that there is a third class of fundamental particles, called “goofions,”
for which 0, 1, or 2 particles may occupy any state. Derive the occupation
number n as a function of ε, µ, and β for these goofions. (Needless to say,
goofions aren’t found in our part of the Universe. But composite particles
that behave like this are found.)

10. Repeat the above problem for “daffyons,” which may have only 0, 2, or
5 particles per state.

11. The ground state of a boson system at 290 K has energy ε = 0. If the occu-
pation number of this state is 0.001, what is the chemical potential?

12. The chemical potential of photons is zero.
(a) What is the occupation number for the (ε = 0) ground state of a photon

gas?
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(b) Why isn’t this a problem?
(c) The total energy held by the photons in any state is the product of the

number of photons times the energy of each. Find the energy carried by
all the photons in the ground state by writing this product for finite ε and
taking the limit as ε → 0. (Answer in terms of kT .)

13. Fill in the missing steps in the development leading to equation 19.4.

Section B
14. What is the occupation number n of a state with energy ε = µ according

to (19.3, 19.6) (a) Fermi--Dirac statistics, (b) classical statistics, (c) Bose--
Einstein statistics?

15. Regarding the occupation number n:
(a) For what value of (ε − µ)/kT is the classical prediction half that for

boson systems?
(b) For this value of (ε − µ)/kT , what is the ratio of the classical prediction

and that for fermions?

16. If a system is at 1000 K, what is the occupation number of a state of energy
0.1 eV above the chemical potential according to (a) Fermi--Dirac statistics,
(b) classical statistics, (c) Bose--Einstein statistics. (d) Repeat these calcula-
tions for a temperature of 300 K.

17. Consider a system of three flipped coins. According to classical statistics,
how many different arrangements are available to this system:
(a) if the coins are distinguishable,
(b) if the coins are identical?
(c) For what fraction of the arrangements in (a) are all three heads or all

three tails?
(d) What is the true number of different heads/tails configurations available

to a system of three identical flipped coins?
(e) For what fraction of these arrangements are all three heads or all three

tails?

18. Consider a system of two rolled dice, each having six possible states available
to it (six different numbers of dots showing upward). According to classical
statistics, how many different arrangements are available to this system
(a) if the dice are distinguishable,
(b) if the dice are identical.
(c) According to classical statistics, in what fraction of the total number of

different configurations do the two dice show the same number of dots?
(d) What is the true number of distinguishable configurations available to

two identical dice?
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(e) For what fraction of the distinguishable configurations in (a) do the two
dice show the same number of dots?

19. Consider the possible arrangements of two particles between four quantum
states. Some arrangements will have no more than one particle per state
(single occupancy) and some will have both particles in the same state (double
occupancy). Give the numbers s and d of different arrangements having single
and double occupancy according to
(a) classical statistics for distinguishable particles,
(b) classical statistics for identical particles,
(c) Bose--Einstein statistics,
(d) Fermi--Dirac statistics.

20. Consider the distribution of two particles between three states. List all pos-
sible arrangements of the system if the particles are (a) distinguishable,
(b) identical bosons, (c) identical fermions.

21. In the above problem, what is the probability of finding the two particles in the
same state according to (a) classical statistics, (b) Bose--Einstein statistics,
(c) Fermi--Dirac statistics?

22. Consider the distribution of three particles among two states. List the pos-
sible arrangements of the system if the particles are (a) distinguishable,
(b) identical bosons, (c) identical fermions.

23. In the problem above, what is the probability of finding the system at any
instant in an arrangement where all three particles are in the same state
according to
(a) classical statistics for distinguishable particles,
(b) classical statistics for identical particles,
(c) Bose--Einstein statistics,
(d) Fermi--Dirac statistics?

Section C
24. Consider a system of nonrelativistic electrons in a white dwarf star at a

temperature of 109 K. Very roughly, what would be their density if the system
is degenerate? How does this compare with typical electron densities in
ordinary matter of about 1030 electrons/m3?

25. Consider nitrogen (N2) gas at room temperature and atmospheric pressure
(1.013 × 105 Pa). The mass of each molecule is 4.67 × 10−26 kg.
(a) Determine whether classical statistics would be appropriate for its study.

(Hint: N/V = p/kT .)
(b) If the particle density remains unchanged, at what temperature would the

number of accessible quantum states and the number of N2 molecules
become about equal?
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26. Consider the conduction electrons in copper. Each copper atom contributes
one electron to the conduction electrons. Copper has atomic weight 64 and
density 8.9 g/cm3.
(a) What is the volume per conduction electron?
(b) What is the characteristic separation of conduction electrons, r?
(c) Can these conduction electrons be treated using classical statistics at

room temperature?
(d) Could these conduction electrons be treated using classical statistics at

10 000 K?
(e) Can the copper atoms be treated using classical statistics at room

temperature?

27. The characteristic separation of molecules of liquid water is about 0.3
µm. Could water molecules at room temperature be studied using classi-
cal statistics?

28. Thermal energies for nucleons in large nuclei are comparable with their
binding energies of about 6 MeV.
(a) To what temperature does this correspond?
(b) Within nuclear matter, identical nucleons are separated by about 2.6 ×

10−15 m. What is roughly the minimum temperature needed for them
not to be degenerate (i.e., for the number of accessible states to be much
larger than the number of particles.)?

Section D
29. Iron atoms have mass 9.3 × 10−26 kg and are bound in place by electrostatic

forces with an effective force constant κ = 2 N/m.
(a) What is the fundamental frequency of vibration for these atoms?
(b) What is the excitation temperature?
(c) At a temperature of 20 K, is the separation of neighboring states large or

small compared with kT?

30. Consider a single conduction electron in a cube of metal measuring 1 cm on
a side.
(a) How much energy separates the ground state from the first excited state

for this electron? (Hint: Each dimension must be an integer number of
half wavelengths. So in the ground state the wave number in each of the
three dimensions would be (2π/2) cm−1.)

(b) What is the excitation temperature?
(c) At a temperature of 20 K, is the separation of neighboring states large or

small compared with kT?

31. Consider the electrons (spin 1/2) in a conduction band, which are confined
to volume V and for which the energy and momentum are related through
ε = ε0 + p2/2m, where ε0 is some constant reference level. Suppose that
this system can be treated as a gas.
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(a) Start with d3rd3 p/h3 and integrate over all volume and all angles
of the momentum to find an expression for the number of accessi-
ble states as a function of the magnitudes of p, m, andV . (Hint: Write
d3 p = p2dp sin θ dθdφ and integrate over all solid angles.)

(b) Convert p into ε to find an expression for the density of states in terms
of m, V , ε, and ε0.

(c) What is the distribution of particles, dN/dε, for these fermions in terms
of m, V , ε, ε0, µ, and T?

32. (Computational problem. It would help to have a spreadsheet or a pro-
grammable calculator.) Consider a system of bosons at 290 K with µ =
−0.01 eV, for which the energies of the various states are given by εm =
m0.01 eV, where m = 0, 1, 2, 3, . . .

(a) What is the total number of particles in this system, on average?
(b) What is the total energy of this system, on average?
(c) Repeat parts (a) and (b) for the case where the mth state is m + 1 times

degenerate.

33. Repeat the above problem for a system of fermions at 290 K for which
µ = +0.03eV.

34. Suppose that the density of states for some system is given by g(ε) = Cεα,

where C and α are constants. Set up the integrals for the number of particles
and for the total energy of this system, if the particles are (a) fermions,
(b) bosons.

Section E
35. For a certain boson system, the density of states is constant (g(ε) = C),

and the occupation numbers of all states are sufficiently small that we can
write n ≈ e−β(ε−µ). Show that the chemical potential, µ, depends on the
temperature and the total number of particles in the system according to
µ = −kT ln(CkT/N).

36. Consider a system of fermions and a system of bosons that each have the same
spectrum of states. In order to have the same number of particles altogether,
which chemical potential must be larger? (Hint: See Figure 19.2.)

Section F
For problems 37–39, assume that the fermions are truly identical, including having
the same spin orientations.

37. Using equation 19.17, give a rough estimate of the energy of the Fermi surface
in eV and the corresponding thermal temperatures, for each of the following
systems:
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(a) conduction electrons in copper metal, for which there are about 8 × 1028

conduction electrons per cubic meter (comparable with the density of
copper atoms);

(b) conduction electrons in aluminum. Its density is 2.7 g/cm3, its atomic
mass number is 27, and each atom gives one electron to the conduction
band.

38. Using equation 19.17, give a rough estimate of the energy of the Fermi surface
in eV and the corresponding thermal temperatures, for each of the following
systems:
(a) the electrons in a white dwarf star, whose electron density is about

1035/m3;
(b) the protons in a white dwarf star, whose proton density is comparable

with that of the electrons;
(c) the neutrons in an iron nucleus, which is a sphere of radius 5.0 × 10−15 m

and which contains 30 neutrons.

39. White dwarf stars are essentially plasmas of free electrons and free protons
(hydrogen atoms that have been stripped of their electrons). Their densities
are typically 5 × 109 kg/m3 (i.e., 106 times the average density of Earth).
Their further collapse is prevented by the fact that the electrons are highly
degenerate, that is, all the low-lying states are filled and no two identical
electrons can be forced into the same state.
(a) Estimate the temperature of this system. (Assume nonrelativistic elec-

trons and that p2
f /2m = (3/2)kT .)

(b) Now suppose that the gravity is so strong that the electrons are forced
to combine with the protons, forming neutrons (with the release of a
neutrino). If the temperature remains the same, what would be the density
of this degenerate neutron star?



Chapter 20
Quantum gases

A The density of states 422
B Distributions and mean values 423
C Internal energy and the gas laws 426
D Internal energy and the chemical potential 428

D.1 Degenerate gases 428
D.2 The classical limit 431
D.3 Intermediate temperatures 431

Although the occupation number has the same form for all fermion or all boson
systems, the spectrum of accessible states does not. We begin our study of this
second and more elusive of the two ingredients in the study of such systems by
looking into quantum gases.

A The density of states

The number of quantum states within the six-dimensional element of phase space
d3rd3 p is given by equation 1.5:

number of states = d3rd3 p

h3
.

Converting this to the form g(ε)dε, where g(ε) is the density of states, could
be difficult, because for many systems, interactions may severely constrain the
accessible regions of phase space and make the energy a complicated function of
the position and momentum.

For a gas, however, the particle momenta and positions are unrestricted. As
we showed in subsection 1B.5, we can integrate over all volume (∫d3r = V ) and
all angles for the momentum,

∫
p2dp sin θ dθdφ → 4π

∫
p2dp,

422
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and then convert momentum to energy according to1

ε = p2

2m
(nonrelativistic), ε = pc (relativistic),

to get (equation 1.9)

g(ε) = 2πV (2m)3/2

h3

√
ε (nonreleativistic),

g(ε) = 4πV

h3c3
ε2 (relativistic).

Each system of otherwise identical particles is actually composed of subsys-
tems that are distinguished from each other by the orientations of the spins. A
massive spin-s particle (subsection 1B.6) has 2s + 1 possible spin orientations.
(However, if it is massless and moving at the speed of light, its spin has only
2s orientations.) If we include this spin degeneracy in our density of states then
equation 1.9 becomes

g(ε) = Cεα, (20.1)

where

C =




(2s + 1)
2πV(2m)3/2

h3
, α = 1

2
(nonrelativistic particles),

2s
4πV

h3c3
, α = 2 (relativistic particles).

B Distributions and mean values

Using the density of states and the occupation numbers, we can now calculate
various properties. For example, the density of particles is the product of the
density of states and the average number of particles in each, and the distribution
of energy is the product of the density of states and the average energy in each
(equations 19.3 and 19.12′):

dN

dε
= g(ε)n(ε) = Cεα

eβ(ε−µ) ± 1
,

(20.2)
dE

dε
= g(ε)n(ε)ε = Cεα+1

eβ(ε−µ) ± 1
.

More generally, the mean value of any property f , averaged over all particles, is
given by

f = 1

N

∫
f dN = 1

N

∫
f (ε) g(ε)n(ε)dε︸ ︷︷ ︸

dN

. (20.3)

The particle distributions dN/dε for quantum gases are shown on the right in
Figures 20.1 through 20.3 for the following four cases, each at both high- and

1 In the homework problems this conversion can be carried out for the general case of all speeds,

with ε =
√

p2c2 + m2c4 − mc 2.
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Figure 20.1 Particle distribution in a nonrelativistic (g(ε) ∝ ε1/2) fermion gas at low
and high temperatures.
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Figure 20.2 Particle distribution in a nonrelativistic (g(ε) ∝ ε1/2) boson gas at low
and high temperatures.
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dN/dedN/dedN/dedN/de

low temperature

Relativistic fermions

high temperaturelow temperaturehigh temperature

Relativistic bosons

ee e e
Figure 20.3 Particle
distributions in relativistic
(g(ε) ∝ ε2) quantum
gases at low and high
temperatures.

low-temperature extremes: nonrelativistic fermions, nonrelativistic bosons, rela-
tivistic fermions, relativistic bosons. You can see that in the low-energy limit the
exponential is of little consequence and in the high-energy limit it dominates. So
for the particle distributions in these two limits we have2

dN

dε
≈

{
εα at low energies,
e−βε at high energies.

Summary of Sections A and B

The number of quantum states within the six-dimensional element of phase space

d3rd3 p is given by equation 1.5.

number of states = d3rd3 p

h3
.

For the important case of gases, we integrate over all volume and momentum

directions, convert momentum to energy, and sum over all possible spin orientations

of the spin-s particles to get the following expression for the density of states

(equation 20.1):

g(ε) = Cεα,

where

C =




(2s + 1)
2πV(2m)3/2

h3
, α = 1

2
(nonrelativistic particles),

2s
4πV

h3c3
, α = 2 (relativistic particles).

Combining the expression for the density of states g(ε) with the occupation

numbers of equation 19.3, we can now use equation 19.12′ to find the distribution of

2 For the case of bosons with µ = 0, the behavior will be slightly different, as can be shown in the

homework problems.
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particles and energy in a quantum gas (equation 20.2).

dN

dε
= g(ε)n(ε) = Cεα

eβ(ε−µ) ± 1
,

dE

dε
= g(ε)n(ε)ε = Cεα+1

eβ(ε−µ) ± 1
.

The mean value of any property f , averaged over all particles, is (equation 20.3)

f = 1

N

∫
f dN = 1

N

∫
f (ε)g(ε)n(ε)dε.

C Internal energy and the gas laws

In Section 15H, we used classical statistics to show that a gas of N particles
should have a total translational kinetic energy of

Etranslational = 3
2 NkT (classical gas).

But now we know that classical statistics is not quite correct for systems whose
particles are sufficiently dense that more than one particle may attempt to occupy
the same state.

In the case of identical bosons, the low-lying states have larger occupation
numbers than the classical prediction (See Section 19B and Figures 19.2 and
20.4), so the total internal energy of a system of identical bosons should be
correspondingly lower:

Etranslational < 3
2 NkT (boson gas).

Figure 20.4 Compared with classical particles, bosons have more particles in the
low-lying states of multiple occupancy. Therefore, a boson gas has a smaller internal
energy than the classical prediction. For identical fermions, however, no two may
occupy the same state. This exclusion forces them into higher levels and therefore a
fermion gas has a higher internal energy than the classical prediction.
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In the case of identical fermions, the low-lying states have smaller occupa-
tion numbers than the classical prediction. The exclusion of particles from
states already occupied means that many fermions are forced into higher levels
(Section 19B or Figure 20.4). Consequently, the total internal energy of a system
of identical fermions is greater than the classical result:

Etranslational > 3
2 NkT (fermion gas).

In the homework problems these predictions can be verified by carrying out
the steps in the following derivation. We examine the integrals of equations 20.2
for the total number of particles and the total energy of the system:

N =
∫

dN = C

∞∫
0

εα n(ε)dε, (20.4a)

E =
∫

dE = C

∞∫
0

εα+1n(ε)dε. (20.4b)

The similarity of these two expressions allows us to integrate one by parts to
express it in terms of the other. Integrating the first by parts gives

N = 0 − C

α + 1

∞∫
0

εα+1dn.

Into this integral we substitute the following expression, which is obtained by
differentiating equation 19.3 for n:

dn = −β
(
n ∓ n2

)
dε.

The result is3

N = C

(α + 1)kT

∞∫
0

εα+1
(
n ∓ n2

)
dε.

Multiplying both sides by (α + 1)kT and breaking the integral into two parts
gives

(α + 1)NkT = C

∞∫
0

εα+1ndε ∓ C

∞∫
0

εα+1n2dε.

The first of the two integrals is the internal energy of the system as given in
equation 20.4b above. Shifting this to one side of the equation and the other two
terms to the other gives (refer to equation 20.1 for the values of α)

E = (α + 1)NkT ± δ, (20.5)

3 We always use the convention that the upper sign is for fermions and the lower sign for bosons.
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where

δ = C

∞∫
0

εα+1n2dε,

α + 1 =
{

3
2 (nonrelativistic gas),
3 (relativistic gas).

This result shows that the kinetic energy of a quantum gas differs from the
classical prediction E = (α + 1)NkT , the fermion energy being larger (+δ) and
the boson energy being smaller (−δ). Furthermore, because of the factor n2 in
the integral for δ, the difference between the quantum and classical results is only
significant when the occupation numbers are relatively large. This is exactly what
we expected.

This difference in kinetic energy carries directly over into the pressure, giving
the corresponding modification of the ideal gas laws. It is fairly easy to show
(homework) that the pressure of a gas is given by

pV = 2
3 Etranslational

(
pV = 1

3 Etranslational, if relativistic
)
. (20.6)

Using result 20.5, this gives the following ideal gas law for nonrelativistic quan-
tum gases:

pV = NkT ± 2
3 δ. (20.7)

So, compared with the classical result for any given temperature, the pressure in
a fermion gas is larger and that in a boson gas is smaller.

D Internal energy and the chemical potential

In the preceding chapter (subsection 19E.1, equation 19.13) we saw that we can
determine the chemical potential implicitly from the requirement that the total
number of particles equals the sum of those in the individual quantum states:4

N =
∑

s

ns =
∑

s

1

eβ(εs−µ) ± 1
. (20.8)

Once µ is determined, we then know the occupation numbers ns for all states.
This enables us to determine other properties. For example, the internal energy
is the sum of the energies of the particles in each state:

E =
∑

s

nsεs =
∑

s

εs

eβ(εs−µ) ± 1
. (20.9)

D.1 Degenerate gases

As we saw in the previous chapter, it is particularly easy to solve these equations
in the low-temperature “degenerate” limit, where the particles are in the lowest

4 The dependence of µ on N and T (through β = 1/kT ) is evident in this implicit equation. The

dependence on V is more subtle, as it enters via the spectrum of states being summed over.
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states possible. For degenerate bosons, all N particles are in the one state of very
lowest energy (ε = 0), making equations 20.8 and 20.9 particularly easy to solve
for µ and E (equation 19.15):

µdegenerate bosons = −kT ln

(
1 + 1

N

)
≈ −kT

N
,

(20.10)
Edegenerate bosons = 0.

This result does not depend on the spectrum of states, since only the lowest-energy
state is occupied. Consequently, it is correct for all degenerate boson systems,
gases or otherwise.

For fermions, however, the distribution of states does matter. Because of the
exclusion principle, as many different states must be occupied as there are iden-
tical fermions. For summing over such a large number of states, it is easiest to
replace the discrete sums in equations 20.8 and 20.9 by continuous integrals
as in equations 20.4, using the density of states for gases, g(ε) = Cεα , from
equation 20.1:5

N =
∑

s

ns =
∫

g(ε)n(ε)dε −→
gases

C

∫
εαn(ε)dε, (20.11a)

E =
∑

s

nsεs =
∫

g(ε)n(ε)εdε −→
gases

C

∫
εα+1n(ε)dε. (20.11b)

For degenerate fermions, the lowest N states up to the Fermi surface (εf =
µT =0) are occupied and those above it are empty. This fact makes it easy to
evaluate the integrals of equations 20.11, because the occupation number is a
step function (Figure 19.1):

n(ε) =
{

1 for ε < εf,

0 for ε > εf.

Thus we obtain

N = C

∫ εf

0
εαdε = C

α + 1
εα+1

f , (20.12a)

E = C

∫ εf

0
εα+1dε = C

α + 2
εα+2

f . (20.12b)

Solving the first of these for the chemical potential (µ = εf) gives

µdegenerate fermions = εf =
[

(α + 1)N

C

]1/(α+1)

, (20.13)

5 Notice that, in replacing the discrete sum by an integral, the ground state is excluded because

g(0) = 0. Although generally not significant for fermions, this exclusion would be significant

for low-temperature boson systems, where large numbers of particles might be in this excluded

state.
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Table 20.1. The chemical potential µ(V, N , T ) for quantum gases (λ is the number of spin orientations.
α = 1/2 if the gas is nonrelativistic and α = 2 if it is relativistic)

All temperatures, bosons and fermions

N = λC(kT )α+1 f (y), where f (y) =
∫

xαdx

ex−y ± 1

(
y = µ

kT

)
Degenerate, high-occupancy, T → 0 limit nonrelativistic (α = 1/2) relativistic (α = 2)

µbosons = − kT

N
− kT

N

µfermions = h2

2m

(
3N

λ4πV

)2/3

hc

(
3N

λ4πV

)1/3

classical, low-occupancy, T→ ∞ limit

µboth bosons and fermions = −kT ln

[
λV

Nh3
(2πmkT )3/2

]
−kT ln

[
λ8πV

Nh3c3
(kT )3

]
nearly degenerate spin-1/2 fermions

µ ≈ ε f

[
1 − π2

12

(
kT

ε f

)2
]

where the values of α and C are given by equation 20.1. And the ratio of the two
results 20.12a, b gives the average energy per particle in a degenerate fermion
gas:

ε = E

N
= α + 1

α + 2
εf. (20.14)

Inserting the values of α and C from equation 20.1 into equations 20.13 and
20.14 gives the following expressions for the chemical potential and average
energy per particle for a system of degenerate spin-1/2 fermions:

in the nonrelativistic case,

µdegenerate fermions = εf = h2

2m

(
3N

8πV

)2/3

, ε = 3

5
εf, (20.15a)

and in the relativistic case,

µdegenerate fermions = εf = hc

(
3N

4πV

)1/3

, ε = 3

4
εf. (20.15b)

The results for N and µ are collected together in Table 20.1. Important degenerate
(or nearly degenerate) spin-1/2 fermion gases include the following:

nonrelativistic case
� conduction electrons in metals (free electron model)
� inner electrons in large atoms (Thomas--Fermi model)
� nucleons in large nuclei and neutron stars

relativistic case
� electrons in collapsed stars
� quarks, electrons, neutrinos in the early Universe



Quantum gases 431

D.2 The classical limit

In the “classical limit” of high temperatures, the occupation numbers are small6

and can be approximated as follows:

n(ε) = 1

eβ(ε−µ) ± 1
≈ e−β(ε−µ).

Our equations 20.8 and 20.9 then become

N = Ceβµ

∫
e−βεεαdε, (20.16a)

E = Ceβµ

∫
e−βεεα+1dε. (20.16b)

The integrals are now easy. Solving the first equation for µ gives (homework)

µcl =




−kT ln

[
(2s + 1)V

Nh3
(2πmkT )3/2

]
(nonrelativistic, α = 1/2),

−kT ln

[
2s8πV

Nh3c3
(kT )3

]
(relativistic, α = 2)

(20.17)

where we have inserted the values of C and α from equation 20.1. Knowing µ we
could now use equation 20.16b to calculate the system’s energy E (homework).
But this is not necessary, because we can integrate equation 20.16a for N by parts
to get equation 20.16b for E , showing (as we did in the preceding section) that

Ecl = (α + 1)NkT .

D.3 Intermediate temperatures

We now have expressions for the chemical potential and energy for boson
and fermion gases in the degenerate (T → 0, high-occupancy) and classical
(T → ∞, low-occupancy) limits. But between these two limits, equations 20.11
are difficult to solve. Making the substitutions x = ε/kT, y = µ/kT they can be
turned into the forms (problem 16)

N = C(kT )α+1 f (y) , where f (y) =
∫

xαdx

ex−y ± 1
, (20.18a)

and

E = C(kT )α+2g(y) , where g(y) =
∫

xα+1dx

ex−y ± 1
. (20.18b)

The integrals on the right-hand sides of equations 20.18 can be done numer-
ically, so that we can make plots of f (y) and g(y) vs. y (Figure 20.5). The

6 It is not obvious from looking at the fermion occupation number that it should be small in the

high-temperature (small-β) limit. But it is. The physical reason is that the increased accessible

volume in momentum space means that the same number of particles is spread out over a larger

number of states. The mathematical reason is that µ becomes large and negative.
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Figure 20.5 Plots of
f (y) vs.y = µ/kT for
quantum gases, which
are used in determining
the chemical potential via
equations 20.18. Why do
we only have y < 0 on the
boson plot? (Hint: When y
and hence µ reach 0, how
many bosons would be in
the ground (ε = 0) state
alone?)

correct value of y = µ/kT is the one that gives the correct number of particles in
equation 20.18a.

Therefore, in order to determine the correct value of y (and hence µ) for a
system, we can do the following with equation 20.18a:

� calculate the value of the constant C for the system using equation 20.1;
� solve equation 20.18a for f (y) (using f (y) = N/C(kT)α+1);
� go to the plot of f (y) vs. y to find the value of y.

Having determined the correct value of y (and hence µ) in this manner, we can
now use it in the occupation number n to calculate any property of the system. For
example, we could now use equation 20.18b to find the system’s internal energy.

As you can see, this technique for determining the chemical potential is
tedious. Fortunately, we seldom need to use it. Many systems are in either the
degenerate or classical regimes, for which the chemical potentials are given by
equations 20.10, 20.15, and 20.17. And in many cases, we won’t need to know
the chemical potential at all. Even in the intermediate regions we can sometimes
determine the chemical potential cleanly and simply from other considerations.

But one important system for which we cannot always avoid the integrals of
equations 20.18 is that of nearly (but not completely) degenerate nonrelativistic
fermion gases, such as conduction electrons in metals. For these, we integrate by
parts (

∫
udv = uv|∞0 − ∫

vdu), noting that we can do both integrals, f (y) and
g(y), in the following manner:

I (y) =
∞∫

0

(
1

ex−y + 1

)
︸ ︷︷ ︸

u

(xκdx)︸ ︷︷ ︸
dv

=
(

1

ex−y + 1

)
︸ ︷︷ ︸

u

(
xκ+1

κ + 1

)
︸ ︷︷ ︸

v

∣∣∣∣∣∣∣∣∣

∞

0

−
∞∫

0

(
xκ+1

κ + 1

)
︸ ︷︷ ︸

v

( −ex−ydx

(ex−y + 1)2

)
︸ ︷︷ ︸

du

,

and where κ = 1/2 for f (y) and κ = 3/2 for g(y). The first term on the right
(uv|∞0 ) is zero at both end points, and the second term (−∫ vdu) is evaluated by
noting that the fermion occupation number varies significantly only near ε ≈ µ



Quantum gases 433

(Figure 19.1). Hence, du(= dn) is only non-zero near the point x = y, and it is
convenient to expand our expression for v in a Taylor series in z = (x − y) around
that point. We carry this out in Appendix F and obtain the following results for
the chemical potential and average energy per particle in a nearly degenerate
nonrelativistic fermion gas (εf is given in equation 20.15):

µ ≈ εf

[
1 − π 2

12

(
kT

εf

)2
]

,

(20.19)

ε ≈ 3

5
εf

[
1 + 5π2

12

(
kT

εf

)2
]

.

Summary of Sections C and D

The translational kinetic energy of a quantum gas differs from the classical

prediction. A fermion system has more energy, because some fermions are forced

into higher levels if the lower levels are already occupied. In the case of bosons, the

low-lying states have larger occupation numbers than the classical prediction, so

that the total internal energy of a boson system is correspondingly lower. The

calculations give (equation 20.5)

E = (α+1)NkT ± δ, where δ = C

∞∫
0

εα+1n2dε,

α + 1 =
{

3
2 (nonrelativistic gas),

3 (relativistic gas).

and where the constant C is given in equation 20.1; δ is a positive function of

µ and T and represents the difference between the classical and quantum

predictions. This difference becomes larger for higher particle densities.

This difference in translational energies carries directly over into the pressure

exerted by these gases. The ideal gas law becomes (equation 20.7)

pV = NkT ± 2
3 δ (nonrelativistic gas).

The chemical potential appears in the expression for the occupation numbers, and so

it is needed when performing a complete analysis of a system. It can be calculated

by ensuring that the sum of the particles in all quantum states is equal to the total

number of particles in the system (equation 20.11a):

N =
∑

s

ns =
∫

g(ε)n(ε)dε −→
gases

C

∫
εαn(ε)dε.

This is an implicit equation that can be solved for µ in terms of N , V, and T. The

internal energy is given by a similar expression (equation 20.11b):

E =
∑

s

nsεs =
∫

g(ε)n(ε)εdε −→
gases

C

∫
εα+1n(ε)dε.
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Fortunately, these expressions become simple in the degenerate (T → 0) and

classical (T → ∞) limits, so the integrals are easily done. The results in the

degenerate limit (high occupancy, T → 0) are (equations 20.10, 20.15):

bosons, µ ≈ −kT

N
, E = 0;

nonrelativistic fermions, µ = εf = h2

2m

(
3N

8πV

) 2
3

,

relativistic fermions, µ = εf = hc

(
3N

4πV

) 1
3

.

In the classical limit (low occupancy, T → ∞), for both bosons and fermions we

have (equation 20.17)

µ =




−kT ln

[
(2s + 1)V

Nh3
(2πmkT )3/2

]
nonrelativistic,

−kT ln

[
2s8πV

Nh3c3
(kT )3

]
relativistic.

At intermediate temperatures, things are more difficult. With the substitution of

variables x = ε/kT, y = µ/kT , expressions 20.11a,b can be put into the forms

(20.18a, b)

N = C(kT )α+1 f (y), where f (y) =
∫

xαdx

ex−y ± 1
,

E = C(kT )α+2g(y), where g(y) =
∫

xα+1dx

ex−y ± 1
.

The first of these can be solved for µ by finding the value of y (=µ/kT) that

gives the correct value for the number of particles, N . This is fairly tedious but

fortunately, we seldom need to do it. Many systems we study are in either the

degenerate or classical regimes, for which the chemical potentials are given by

equations 20.10, 20.15, and 20.17. And in many cases, we won’t need to know the

chemical potential at all. Even in the intermediate region we can sometimes

determine the chemical potential cleanly and simply from other considerations.

For nearly degenerate nonrelativistic fermions, however, such as conduction

electrons in metals, we must do the integrals. Using a Taylor series expansion, we

obtain for nearly degenerate fermions (equation 20.19)

µ ≈ εf

[
1 − π2

12

(
kT

ε f

)2
]

ε ≈ 3

5
εf

[
1 + 5π2

12

(
kT

ε f

)2
]

.
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Problems

Section A
1. The correct relativistic formula that relates momentum to energy at all

speeds is ε2 = p2c2 + m2c4. Using this, find the expression corresponding
to the density of states of equation 1.9 or 20.1 that is correct at all speeds.
(Equations 1.9 and 20.1 only give the answer for kinetic energy,
εkin = ε − mc2, in the high- and low-speed extremes.)

2. Consider the neutrino to be a massless spin-1/2 fermion. How many different
orientations of its intrinsic spin angular momentum can a neutrino have? How
about a photon, with spin 1? How about a massive vector boson with spin 1?

3. Using powers of 10, estimate the number of quantum states accessible to an
outer electron on an atom, by estimating the size of an atom and knowing that
typical binding energies are a few eV. (That is, if the kinetic energy is greater
than a few eV then the electron is no longer on the atom.) The number of
states = Vr Vp/h3.)

Section B
4. Using equation 20.1, estimate the density of states at energy ε = kT and at

T = 295 K for:
(a) air molecules in a room of volume 30 m3 (assume no intrinsic spin angular

momentum and take the mass of an air molecule to be 4.8 × 10−26 kg);
(b) electrons in a metal of volume 10−5 m3.

5. Using the densities of states from the previous problem, find the distribution
of particles, dN/dε, in particles per eV, around the energy kT for:
(a) air molecules, which are bosons with µ = −0.01 eV;
(b) electrons, which are fermions with µ = +0.08 eV;

6. Sketch diagrams similar to Figures 20.1 and 20.2 for fermions and bosons
in the high- and low-temperature limits, if the density of states increases
linearly with energy ε.

7. Suppose that the density of states for a certain system is a constant, g(ε) = C1.
In addition, suppose that the occupation number is given as n(ε) = C2e−βε.
(a) What is the average energy per particle in this system in terms of

C1, C2, and kT?
(b) Repeat for the case where the density of states is g(ε) = C1ε.

8. Suppose that in a certain system, particle densities are small so that you can
use the approximation n(ε) = e−β(ε−µ).
(a) Using p = (1/N )

∫
pdN show that the average value of the magnitude

of the momenta for particles in a nonrelativistic quantum gas is given by
(2s + 1)(2πV/Nh3)eµ/kT (2mkT )2.
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(b) In Chapter 16 we found that the average value of the magnitude of the
momenta is given by

√
8mkT/π . Use this and your answer to part (a) to

find an expression for the dependence of chemical potential on temper-
ature in a classical gas.

9. Show that, for a boson system with µ = 0, the distribution of particles dN/dε

is proportional to εα−1 for very low energies ε � kT .

Section C
10. Show that the internal energy of a quantum gas is given by equation 20.5, by

starting with equations 20.4 and filling in the intermediate steps.

11. In this problem, we prove that pV = (2/3)Etrans for a nonrelativistic gas, and
pV = (1/3)Etrans for a relativistic gas.
(a) Suppose that there are N particles of mass m in a container of volume

V , all moving in the x dimension with nonrelativistic speed vx . Half are
going to the right and half to the left. What is the flux of particles moving
in the +x direction in terms of N , V, m, and vx ?

(b) When one of these collides elastically with a wall in the yz-plane, what
is the momentum transfer?

(c) What is the rate of momentum transfer (with units force per unit area)?
(Flux = ρ+vx , where ρ+ is the density of particles moving in the
+x direction.)

(d) Now suppose that they are moving in all directions with a variety of
speeds, so you have to average over the velocities, replacing v2

x with its
average v2

x . Show that pV = (2/3)Etrans.
(e) Repeat the above for a relativistic gas, where the speed in the x direction

is c cos θ and the x-component of momentum is p cos θ , where θ is the
angle relative to the x-axis. At the end you will have to average cos2 θ

over the forward hemisphere. For a relativistic particle the translational
kinetic energy is ε = pc.

Section D
12. In the next chapter we will see that photons are massless bosons for which the

chemical potential is zero. What does this say about the number of photons
in the ε = 0 state?

13. Starting with the integral of equation 20.11a, fill in the steps, and see whether
you can arrive at the chemical potential of equation 20.13 for degenerate
fermions.

14. According to equation 20.14 the average energy per fermion is not halfway
between 0 and εf. Why is this?
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15. Evaluate the integral for N of equation 20.16a and solve for µ. Then put
in the values of C from equation 20.1 to see whether you get the answers
indicated. (You’ll need to know that ∫ e−x x1/2dx = π1/2/2.)

16. Show that equations 20.18 are the same as equations 20.11.

17. Using equation 20.17, estimate the chemical potential for air molecules in a
room (N/V = 2.6 × 1025/m3, m = 4.8 × 10−26 kg, T = 290 K, s = 0).

18. Use the value of the chemical potential of equation 20.17 in equation 20.16b
for the internal energy. Then evaluate the integral to see whether you get the
classical result for the internal energy.

19. Using equations 20.15, find the Fermi level in eV, the average energy per
particle, and the corresponding thermal temperatures (εf ≈ (3/2)kT), for
each of the following systems:
(a) conduction electrons in copper metal, of which there are about 8 × 1028

per cubic meter (which is comparable with the density of copper atoms);
(b) conduction electrons in aluminum, with density 2.7 g/cm3 and atomic

mass number 27, assuming that each atom gives one electron to the
conduction band.

(c) For each system, by how much would the chemical potential change in
going from T = 0 to a room temperature of 290 K? (See equation 20.19.)

20. Using Equation 20.15, find the Fermi level in eV and the corresponding
thermal temperature (using εf ≈ (3/2)kT) for each of the following systems
(assume that each is nonrelativistic):
(a) the electrons in a white dwarf star, whose electron density is about

1035/m3;
(b) the protons in a white dwarf star, whose proton density is comparable

with that of the electrons;
(c) the 30 neutrons in an iron nucleus, which is a sphere of radius 5.0 ×

10−15 m.

21. Consider a degenerate gas of electrons at a density of 1029/m3 (about the
density of conduction electrons in metals) and at a temperature of 0 K.
(a) What would be the Fermi level?
(b) What would be the average energy per electron?
(c) If you let this gas expand freely until the electrons were sufficiently far

apart that they could be treated as a classical gas, what then would be the
temperature of the gas?
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We now examine the very important and elegant application of quantum statistics
that initiated the quantum revolution at the beginning of the twentieth century --
the study of electromagnetic radiation.

A Photons in an oven

For reasons that we still do not fundamentally understand, the energy in electro-
magnetic waves is quantized in discrete packets, called “photons.” The energy of
each photon (symbol γ ), depends only on its frequency and nothing else:

εγ = hν = hω.

Photons are massless spin-1 particles that travel at the speed of light and have
two possible spin orientations.1

Consider a gas of these photons that is held within some oven. According to
equation 20.1, the density of states for a gas of relativistic photons with two spin
orientations is

g(ε) =
(

8πV

h3c3

)
ε2, (21.1)

1 They may be labeled right-handed or left-handed, according to whether their spin orientation is

forwards or backwards along their direction of motion. The two independent transverse linear

polarizations may be written as appropriate combinations of two circular polarizations, and vice

versa.

438
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and, according to equation 19.3b, the occupation number is

n̄γ = 1

eβε − 1
. (21.2)

Notice that the photon’s chemical potential µ is zero. To understand the reason
for this, consider a photon gas inside a rigid oven that is insulated from the rest of
the Universe, so that the energy and volume of the combined system are constant
(dE = dV = 0). The number of photons can vary as they are created or absorbed
by the oven’s walls (dNγ 
= 0). According to the first law (equation 8.4), the
entropy of the combined system (photons plus oven) may change according to

T dS = dE + pdV − µγ dNγ -------------------−→
dE=dV=0

−µγ dNγ .

When in equilibrium the entropy of the combined system is a maximum (second
law). Hence, its derivatives must be zero. In particular,2

−µγ = T

(
∂S

∂ Nγ

)
E,V

= 0. (21.3)

Equations 21.1 and 21.2 give us the following energy distribution (see
equations 20.2):

dE = g(ε)n(ε)εdε =
(

8πV

h3c3

)
ε3dε

eβε − 1
.

Dividing by the volume gives the energy density in the range dε:

du = dE

V
=

(
8π

h3c3

)
ε3dε

eβε − 1
, (21.4)

which is also frequently expressed in photon frequencies or wavelengths, via

ε = hω = hc

λ
, (21.5)

as

du =
(

h

π2c3

)
ω3dω

eβ hω − 1
= 8πhc

λ−5dλ

eβhc/λ − 1
. (21.6)

Figure 21.1 displays these distributions as du/dε versus ε and du/dλ versus λ.
In the homework problems it can be shown that the respective peaks are at3

εmax = 2.82kT and λmax = 2.90 mm K

T
. (21.7)

So, at higher temperatures, the spectrum peaks at higher energies and shorter
wavelengths.

2 This proof applies to any type of particle whose total number can vary (e.g., phonons, discussed in

Chapter 22).
3 The peak or maximum is where the derivative is zero. But the derivative with respect to ε is not the

same as the derivative with respect to λ. So the two distributions do not peak at the same place.
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Figure 21.1 Plots of
photon distribution in
energy and in wavelength
for a photon gas in
equilibrium with an oven.
The distributions peak at
εmax = 2.82kT and
λmax = 2.90mm K/T ,
respectively.

We can integrate equation 21.4 over all energies to find the total energy density
in a photon gas, using the substitution x = βε = ε/kT :

u =
8π

h3c3

∫ ∞

0

ε3dε

eβε − 1
−→ 8π(kT )4

h3c3

∫ ∞

0

x3dx

ex − 1

The expression on the right includes a standard integral that has the value π4/15,
so the total energy density u becomes

u = aT4, where a = 8π5k4

15h3c3
= 7.56 × 10−16 J

m3 K4
. (21.8)

B Principle of detailed balance

According to the result 21.4, the energy spectrum of a photon gas depends only
on the temperature (through β = 1/kT) and not at all on the nature of the oven.
For example, it doesn’t depend on the oven’s shape, or whether the oven’s walls
are smooth or rough, shiny or black, made of marble or wood, or whether they
are red, green, or purple. Because it has no effect on the photon spectrum, we
conclude that the wall must put back into the photon gas exactly what it takes
out. That is, the absorbed and emitted intensities must be identical at all photon
energies and wavelengths. This is called the “principle of detailed balance.”

Principle of detailed balance

When in thermal equilibrium with a photon gas, the intensity of radiation emitted by

an object must be equal to the intensity absorbed at each energy and wavelength.

For example, green oven walls would reflect green, absorbing less green and
more of the other colors. Therefore, they must also emit less green and more of
the other colors in order to have no net effect on the photon energy distribution
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Figure 21.3 For an object in equilibrium with the photons in an oven, the spectrum
of photons it emits must be identical to the spectrum of photons it absorbs. When in
an oven, a perfectly black body absorbs all incident radiation and it must emit the
same spectrum that it absorbs. So the spectrum of photons emitted by a black body
must be identical to the spectrum of photons inside an oven of that temperature.

(Figure 21.2). Colors that are absorbed more strongly must also be emitted more
strongly.

Consider an object that is perfectly black, absorbing all incident radiation
perfectly. Imagine that this object is in thermal equilibrium inside an oven
(Figure 21.3). Because it has no effect on the spectrum of photons, it must emit
photons with an energy spectrum that is exactly the same as the spectrum that
it absorbs -- namely the spectrum of photons that are inside the oven. When
removed from the oven and kept at the same temperature the thermal motions
of its atoms and molecules remain the same, so it continues to radiate the same
spectrum. We conclude that the spectrum of energy radiated from perfectly black
bodies must be exactly the same as that within an oven with the same temperature.
For this reason, we use the term “blackbody radiation” for either the radiation
spectrum within an oven, or equivalently, the radiation emitted by perfectly black
bodies.

Figure 21.2 Plots of the
fractions of photons
reflected (Ir/I0), absorbed
(Ia/I0), and emitted (Ie/I0)
as functions of the photon
energies, for photons
incident on a green object
(i.e., one that reflects
green). The red, green,
and blue portions of the
spectrum are indicated.
All incident radiation is
either reflected or
absorbed; I0 = Ir + Ia. In
thermal equilibrium, the
object does not affect the
photon distribution, which
means that photons of
each energy must be
emitted in the same
proportions as they are
absorbed: Ie = Ia.

In Figure 21.4 you can see that our Sun radiates approximately as a blackbody
at temperature 5800 K. You can also see that the cosmic background radiation
left over from the Big Bang origin of our Universe, which cooled as the Universe
expanded, now emulates the radiation of a blackbody at a temperature of 2.7 K.

C Energy flux

For photons in an oven, we now examine the rate of flow of energy in one direc-
tion, call it the z direction. At any instant, half the photons are moving in the
+z direction, and half in the −z direction. The energy density u+z for the former
group will therefore be only half the total (u+z = u/2). Averaging the velocity
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Figure 21.4 (Left) Plots of relative intensities for radiation emitted by blackbodies of
various temperatures as a function of photon wavelength. The red (r), green (g), and
blue (b) portions of the visible spectrum are indicated. The wiggly line is the Sun’s
spectrum, which approximates a blackbody at 5800K. (Right) The variation of
intensity vs. wavelength for the cosmic background radiation, which is the remnant
of the primordial ‘‘Big Bang.”The best fit to the data points is a blackbody curve for
a temperature of 2.735 K. At the low-wavelength end, the blackbody curve goes as
e−βhc/λ; at the high-wavelength end it goes as λ−4. The error bars are smaller than
the width of the line. (COBE satellite data.)

component vz = c cos θ (in spherical coordinates) over the positive z− hemi-
sphere gives their average velocity in this direction as c/2 (homework).

The energy flux Jz is the product of the energy density times the average
z-velocity (Figure 16.3):

Jz = u+zv+z =
(u

2

) ( c

2

)
= uc

4
. (21.9)

Combining this with our expression 21.8 for the energy density u gives

J = σT4, where σ = ac

4
= 5.67 × 10−8 W

m2 K4
. (21.10)

The constant σ is called the Stefan--Boltzmann constant.
Most things are not perfect absorbers and emitters, so we define the “emissiv-

ity” (symbol e) of a surface to be the ratio of the energy flux that it emits to the
flux that would come from a blackbody at the same temperature. Its value ranges
from 0 (emits nothing) to 1 (perfect blackbody), and it depends on the nature of
the material, its temperature and the photon energy:

e = e(T, ε), 0 ≤ e ≤ 1.

Using this and equation 21.9, we can write the emitted flux carried by photons
whose energies are in the range dε as

dJactual = e(T, ε)dJblackbody = e(T, ε)
c

4
du, (21.11)



Blackbody radiation 443

where du is given by equation 21.4. Integration over all photon energies gives

Jtotal = eσ T 4, (21.12)

where e is the emissivity averaged over all emitted energies.
As an object radiates energy into its environment, it also receives energy from

its environment. If the object’s and the environment’s temperatures are T0, Te),
respectively, then the net energy radiated is4

Jnet = eσ
(

T 4
0 − T 4

e

)
. (21.13)

Because an object in equilibrium with a photon gas must absorb exactly as it
emits at all energies and because that which is not absorbed is reflected, we have
the following measures of absorptivity and reflectivity:

absorptivity = emissivity = e(T, ε),
(21.14)

reflectivity = 1 − emissivity = 1 − e(T, ε).

Figure 21.4 shows that the Sun is a good blackbody for the green and longer
wavelengths with e(T, ε) ≈ 1, but its emissivity falls well below that of a black-
body for the shorter wavelengths. You can also see that the relic radiation left over
from the Big Bang birth of our Universe is extremely close to that of a perfect
blackbody.

Example 21.1 The surface of the Sun acts like a blackbody of temperature
5800 K. What is the rate at which energy leaves each square meter of the Sun’s
surface?

Putting T = 5800 K into equation 21.10, the energy flux from the Sun’s surface
is

JSun = σ T 4 = 5.67 × 10−8 W

m2 K4
× (5800 K)4 = 6.4 × 107 W

m2
.

In the homework problems you will show that by the time this energy reaches the
Earth, it has spread out to the point where the flux is only 1.4 × 103 W/m2.

Example 21.2 The radiation inside the Sun can be approximated as a photon
gas at T = 107 K. The volume of the Sun is 1.4 × 1027 m3. How much energy is
contained in this photon gas?

The total energy is the product of the energy density times the volume. With
a temperature of 107K, equation 20.9 gives the energy density as

u = 7.56 × 10−16 J

m3 K4
× (107 K)4 = 7.6 × 1012 J

m3
.

Multiplying this by the Sun’s volume gives the total energy in the Sun’s photon
gas:

E = uV = (7.6 × 1012 J/m3)(1.4 × 1027 m3) = 1.1 × 1040 J.

4 Although the principle of detailed balance guarantees that the emissivity and absorptivity must be

identical at each wavelength, different temperatures involve different wavelength spectra. So the

average emissivity at temperature To might differ from that at Te. But we ignore that here
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Even if its thermonuclear fusion stopped, the Sun could continue shining at its
present rate for over 8 million years before using up all this energy that is stored
inside it.

Summary of Sections A--C

The electromagnetic radiation within an oven can be treated as a photon gas.

Photons are spin-1 massless relativistic particles having two possible spin

orientations and µ = 0. Their equilibrium distribution is the product of the density

of states times the occupation number, which gives the energy density in a photon

gas as (equation 21.4)

du =
(

8π

h3c3

)
ε3dε

eβε − 1
.

If expressed as a distribution in photon frequencies or wavelengths, it becomes

(equation 21.6)

du =
(

h

π2c3

)
ω3dω

eβ hω − 1
= 8πhc

λ−5dλ

eβhc/λ − 1
.

The respective peaks in these two distributions are at (equation 21.7)

εmax = 2.82 kT and λmax = 2.90 mm K

T
,

and the total energy density is (equation 21.9)

u = aT 4, where a = 8π5k4

15h3c3
= 7.56 × 10−16 J

m3 K4

Because the equilibrium distribution of photons in an oven depends only on the

oven’s temperature, neither the oven walls nor any other objects within the oven can

alter this distribution. Those wavelengths that are absorbed more strongly must also

be emitted more strongly. This is the principle of detailed balance. Perfect absorbers

are called blackbodies, and the spectrum of photons emitted from a blackbody at

temperature T must be exactly the spectrum of the photons in a photon gas at that

temperature.

The flux of energy emitted from a blackbody at temperature T is given by

(equation 21.10)

J = σT4, where σ = 5.67 × 10−8 W

m2 K4
.

The emissivity e is the ratio of the intensity of radiation emitted by real objects to

that of a blackbody of the same temperature. The flux emitted in energy increment

dε is (equation 21.11)

dJ = e(T, ε)
c

4
du,

and, integrated over all photon energies, this gives for the total flux of radiation
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emitted (equation 21.12)

Jtotal = eσ T 4,

where e is the emissivity averaged over all emitted energies.

An object (temperature T0) both radiates energy into its environment

(temperature Te) and receives energy from its environment, so the net flux of energy

from a body is given by (equation 21.13)

Jnet = eσ
(
T 4

0 − T 4
e

)
.

The principle of detailed balance relates emissivity, absorptivity and reflectivity

(equation 21.14):

absorptivity = emissivity = e(T, ε)

reflectivity = 1 − emissivity = 1 − e(T, ε)

D Heat shields

D.1 Layered foils

To begin our study of heat shields, we now consider the radiative energy trans-
fer between two regions that are separated by n layers of foil, as illustrated in
Figure 21.5. For simplicity, we assume that all surfaces have the same emissivity,
and we use foils in order to concentrate entirely on radiative transfer and not
worry about impedance due to low thermal conductivities. We assume that the
foils’ temperatures are T1, T2, . . . , Tn , respectively, and that the two regions they
separate are represented by surfaces held at temperatures T0 and Tn+1.

The first surface emits a flux eσT4
0, but then a flux eσT4

1 comes back towards
it from the neighboring foil, foil 1. So the net energy flux through the first layer
(from the first surface to foil 1) is J01 = eσ (T 4

0 − T 4
1 ), that through the second

T0 T1 T2 T3 Tn Tn+1

Figure 21.5 Consider the flow of radiated energy from one surface at temperature
T0 to another at temperature Tn+1, where the two surfaces are separated by n layers
of foil whose temperatures are T1, T2, ..., Tn), respectively. In the steady state, the rate
of flow through all layers is the same.
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layer is J12 = eσ (T 4
1 − T 4

2 ), etc. In the steady state heat enters, leaves, and flows
through all intermediate points of our layered system at the same rate (like water
through a hose):

rate in = rate out = rate through each intermediate layer.

Hence

J
total through
n layers of foil

= eσ
(

T 4
0 − T 4

1

)
︸ ︷︷ ︸

first layer

= eσ
(

T 4
1 − T 4

2

)
︸ ︷︷ ︸

second layer

= · · · . (21.15)

If there were no foil layers, the net flux from left (where the temperature is T0)
to right (where the temperature is Tn+1) would be

Jno foil layers = eσ
(

T 4
0 − T 4

n+1

)
.

By subtracting and adding T 4
1 , T 4

2 etc., we can write this as

Jno foil layers = eσ
(

T 4
0 − T 4

1

)
+ eσ

(
T 4

1 − T 4
2

)
+ · · · + eσ

(
T 4

n − T 4
n+1

)
.

Each of the n + 1 terms on the right is equal to the total flux when there are n
layers of foil (equation 21.15). Hence

J
total through
n layers of foil

= 1

n + 1
Jno foil layers. (21.16)

So, by introducing n layers of foil the radiative heat transfer is reduced by a
factor 1/(n + 1). One familiar consequence is that layered clothing keeps you
warmer.

D.2 The greenhouse effect

Radiation from hotter objects is concentrated at shorter wavelengths. Radia-
tion from the Sun or light bulbs is concentrated near the visible wavelengths
whereas radiation from objects at more earthly temperatures is concentrated in the
infrared.

The glass covering of a greenhouse is fairly transparent to incoming visible
wavelengths but rather opaque to the outgoing infrared. Thus it traps the solar
heating inside the greenhouse, making the interior warmer than it would be in the
absence of the glass. The same happens in solar water heating panels, and in your
car when it sits in the sunlight. Likewise, the interiors of glass-covered terrariums
and incubators are kept warm by the light from external light bulbs. The trapping
layer need not be glass. The Earth’s atmosphere is also rather transparent to
incoming solar energy and opaque to outgoing infrared, so it acts like the glass
covering of a greenhouse by trapping solar heat and keeping us warm.
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Figure 21.6 A
greenhouse. Ji is the
incoming solar radiation
and J0 is the radiation
going outward from the
ground, of which a
fraction x is absorbed by
the glass. That is, xJ 0 is
absorbed and the
remaining (1 − x)J0 is
transmitted. Of the
absorbed radiation, half,
(x/2)J0, is radiated
outward and the other
half inward.

We now develop a quantitative treatment for the greenhouse effect, using an
actual greenhouse as our prototype (Figure 21.6). We assume that the temperatures
of the ground and glass have stabilized so that, for each, the rates of inward and
outward energy flow are the same. We use the symbols Ji for the incoming solar
energy flux, which is mostly in the visible part of the spectrum, and Jo for the
radiation flowing outward from the Earth. Some of this is reflected sunlight but
most is absorbed and then emitted in the infrared wavelengths. Finally, we use
the symbol x for the fraction of the outward-going radiation that is absorbed by
the glass. This is then reradiated from the glass: one half, (x/2)Jo, goes back
downwards towards the ground and the other half, (x/2)Jo, goes upwards and
out.

The quantitative equation is obtained by noting that when equilibrium is estab-
lished, the rate of heat coming in must equal the rate going out. This can be done
from the perspective of either the ground or the glass.

1 The ground’s perspective
Of the energy received by the ground, some comes from the Sun (Ji) and some
from the glass -- that part of the outward-flowing Jo that was absorbed by the
glass and then reradiated back down to the ground, (x/2)Jo. When the ground is
in equilibrium,

outgoing flux = incoming flux ⇒ Jo = Ji +
( x

2

)
Jo.

Solving for Jo gives

Jo =
(

2

2 − x

)
Ji. (21.17)
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2 The glass’s perspective
The solar flux Ji comes downward through the glass. Of the energy radiated
upward from the ground, some, (1 − x)Jo, is transmitted through the glass and
some, xJo, is absorbed; half the latter, (x/2)Jo, is then emitted upward. So when
all is in equilibrium, the rate at which energy enters the greenhouse must equal
the rate that it leaves:

outgoing flux = incoming flux ⇒ (1 − x)Jo +
( x

2

)
Jo = Ji.

Solving for Jo gives the same result as above (21.17).
If there were no glass, the ground would simply reradiate energy at the same

rate that it is received from the Sun (Jo = Ji ). But equation 21.17 tells us that the
presence of the glass has increased the rate at which the ground radiates energy by
a factor 2/(2−x). Because energy is radiated in proportion to the fourth power of
the temperature (equation 21.12), the ground’s temperature must have increased
according to

T ′4
0

T 4
0

= 2

2 − x
⇒ T ′

0

T0
=

(
2

2 − x

)1/4

. (21.18)

Example 21.3 Averaged over all latitudes and all times of day and night, the
flux of solar energy reaching the Earth’s surface is about 175 watts/m2. Of this,
about 90% is absorbed and 10% reflected. Assuming that the Earth’s emissivity
in the infrared e is 0.9, what would be the average value of the Earth’s surface
temperature if it had no atmosphere?

The surface absorbs 90% of the incoming solar energy for a rate of
158 watts/m2. In equilibrium it must reradiate at the same rate. Hence

eσ T 4
0 = 158 watts/m2.

Solving for the temperature T0, using e = 0.9 and σ = 5.67 × 10−8 gives an
average surface temperature

T0 = 236 K (−37 ◦C)

Example 21.4 Repeat the above example but include the effects of the Earth’s
atmosphere, which effectively absorbs nearly 100% (x = 1) of the outgoing
infrared radiation.

According to equation 21.18, the Earth’s surface temperature is increased by

T ′
0

T0
=

(
2

2 − 1

)1/4

= 1.19.

With T0 from the previous example, we find that the atmosphere makes the average
Earth surface temperature rise to

T ′
0 = 1.19T0 = 281 K (8 ◦C).
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E Entropy and adiabatic processes

We now examine the adiabatic expansion or compression of photon gases, which
occurs as the Universe expands and also as a dying star collapses. According
to result 21.8, the energy of a photon gas depends only on its temperature and
volume:

u = aT 4 ⇒ E = uV = aV T 4.

Because the chemical potential is zero, µγ dNγ = 0, and the first law becomes

dE = dQ − pdV .

From this, the heat capacity is easy to calculate:

CV =
(

∂ Q

∂T

)
V

=
(

∂ E

∂T

)
V

= 4aV T 3,

and the entropy of the photon gas is then

S(T, V ) =
T∫

0

dQ

T ′ =
T∫

0

CV dT ′

T ′ = 4a

3
V T 3. (21.19)

For (quasistatic) adiabatic expansions, the entropy is constant. Hence

V T 3 = constant (adiabatic expansion). (21.20)

(In the homework problems this same result can be derived in a different way.)
While expanding adiabatically, a photon gas loses energy by doing work on the
walls of the container.

In a free expansion,5 however, no work is done so the total energy of a photon
gas remains unchanged. Since the energy density is proportional to T 4, we have

V T 4 = constant (free expansion) (21.21)

Shortly after its Big Bang birth our Universe was opaque, meaning that radi-
ation created in this explosion could not go very far without colliding with a
charged particle (e.g., an electron or quark). But now our Universe is transparent
(otherwise our telescopes would be of little use), so a photon from this remnant
“cosmic background radiation” could probably cross the Universe without hit-
ting a thing. Here are questions for you. Was the early expansion of this radiation
adiabatic or free? Has this changed?

5 Review: free expansion occurs when a gas expands into a preexisting void. No boundary is moved

and so no work is done. It is not isentropic even if no heat is added, because entropy increases

(more available states) due to the increased volume in position space. Change in entropy and heat

addition are only related (heat added = T dS) for systems in equilibrium, which does not apply to

free expansion.
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F Thermal noise and the Nyquist theorem

A phenomenon related to blackbody radiation is thermal “noise,” which is gener-
ated in all systems. It is often noticed as fluctuations in the voltage across resistive
elements in sensitive electrical circuits. We can think of the circuit element as a
one-dimensional system of length L and carrying electromagnetic waves of two
possible polarizations.6 The sum over quantum states is given by (using energy
= hf = pc)

2
∫

dxdpx

h
= 2L

h

∫
dpx = 2L

c

∫
d f ,

and the average energy in each state is the product of the occupation number
1/(ehf /kT − 1) and the average energy per wave, hf. Hence, the total energy carried
in these waves is

Ethermal = 2L

c

∫
d f︸ ︷︷ ︸

sum over
states

h f

eh f/kT − 1︸ ︷︷ ︸
average energy
per state

.

Suppose that we are interested in frequencies in the range �f , such as the
bandwidth of the circuit or the frequency range of our measurements, for which
h f � kT (i.e., frequencies below about 1012 Hz at room temperature). Then we
can expand the exponential ex as 1 + x , so that the integrand becomes

h f

eh f/kT − 1
≈ kT,

and integrate over the range �f to get

Ethermal = 2L

c
kT

∫
d f = 2L

c
kT � f.

These thermally generated waves appear throughout the element. So to reach
either end, the average wave would travel half the length of the element, taking
time t = L/2c. Consequently, the rate at which we detect the thermal noise exiting
the circuit element would be

power = energy

time
= 2LkT �f /c

L/2c
= 4kT � f (21.22)

Writing this in terms of the mean square voltage fluctuations over a resistance R
gives the Nyquist theorem for thermal noise in electrical circuits:7

power = 〈V 2〉
R

⇒ 〈V 2〉 = 4RkT � f. (21.23)

6 To keep things simple, we assume that that all signals reaching the ends leave (with no reflection),

and that the leakage out the ends has little effect on the thermal distribution of noise within the

circuit element.
7 H. Nyquist, Phys. Rev. 32, 110 (1928).
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Summary of Sections D--F

When n layers of foil are inserted between regions at two different temperatures, the

radiative heat transfer between the two regions is reduced by a factor of 1/(n + 1)

(equation 21.16):

J
total through
n layers of foil

= 1

n + 1
Jno foil.

Many materials that are fairly transparent to visible wavelengths are rather

opaque to the infrared. Examples include the glass of greenhouses, automobile

windshields, solar water panels, terrariums and incubators, as well as the Earth’s

atmosphere. Thus, they tend to allow the visible radiation (from the Sun, light bulbs,

etc.) to enter but block the infrared radiation (from the ground, car seats, etc.) from

leaving, trapping the heat inside. If the semitransparent layer absorbs a fraction x of

the outgoing infrared radiation, then the outgoing flux J0 of infrared radiation

emitted by the interior surfaces exceeds the incoming visible radiation Ji by a factor

2/(2 − x) (equation 21.17):

Jo =
(

2

2 − x

)
Ji

The interior temperature is raised by factor (equation 21.18)

T ′
0

T0
=

(
2

2 − x

)1/4

.

Because the energy content of a photon gas depends only on its volume and

temperature, it is easy to calculate its heat capacity and entropy (equation 21.19):

CV =
(

∂ Q

∂T

)
V

=
(

∂ E

∂T

)
V

= 4aV T 3,

S(T, V ) =
T∫

0

dQ

T ′ =
T∫

0

CV dT ′

T ′ = 4a

3
V T 3.

Consequently, for (quasistatic) adiabatic expansions (equation 21.20),

V T 3 = constant (adiabatic expansion).

In a free expansion, the energy of the photon gas remains constant, so

(equation 21.21)

V T 4 = constant (free expansion).

Thermal noise is generated in all systems, and is particularly noticeable in

resistive elements of sensitive electrical circuits. We can calculate the energy carried

in these one-dimensional systems by thermally generated electromagnetic waves,
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and we find that the rate at which this thermal noise energy arrives at the ends of the

elements is given by (equation 21.22)

power = energy

time
= 4kT� f,

where �f is the bandwidth of frequencies in which we are interested. Expressing

this in terms of thermal voltage fluctuations, we find that (equation 21.23)

〈V 2〉 = 4RkT � f.

Problems

Section A
1. Starting from Equation 21.4, show that the photon energy distribution du/dε

is proportional to: (a) ε2, for ε � kT, (b) e−βε, for ε � kT .

(With L’Hospital’s rule, you can show that exponentials dominate over poly-
nomials when the variable is large.)

2. Starting from equation 21.6, show that du/dλ is proportional to (a) λ−4,

for λ � βhc, (b) e−βhc/λ, for λ � βhc.

3. Show that the plot of du/dε for the energy distribution in a photon gas peaks
at εmax = 2.82 kT . (Hint: Start with expression 21.4 giving du/dε. At the
maximum, the derivative of this with respect to ε is zero. The result is an
implicit equation for εmax/kT , which you might best solve by trial and error.)

4. Show that the plot of du/dλ for the energy distribution in a photon gas peaks
at λmax = 0.201βhc. If written in the form λmax = constant/T , what is the
value of the constant in units of mm K? (That is, check out the value given
in equation 21.7.)

5. From the answers to problems 3 and 4 or from equation 21.7, does εmax =
hc/λmax? If not, why not?

6. Given that the distribution du/dε peaks at εmax = 2.82kT , we can write an
expression in the form λmax = C/T , where λmax is now the wavelength at
which the distribution du/dε peaks and C is a constant.
(a) What is the value of the constant C in units of mm K? (Note: The peak in

du/dε will be at a different place from the peak in du/dλ, as you showed
in problem 5.)

(b) At what wavelength does the energy distribution du/dε peak for the
photons of the 2.735 K blackbody radiation left over from the primordial
Big Bang that initiated our present Universe?

(c) At what wavelength does the energy distribution du/dε from our Sun
peak, if the visible surface acts like a blackbody of temperature 5800 K?



Blackbody radiation 453

(d) What are the answers to parts (b) and (c) for the distribution in wave-
lengths, du/dλ?

7. Assume that a neutrino is a massless particle that travels at the speed of light
(which is almost true). Unlike a photon, it has spin 1/2 instead of spin 1. If
neutrinos had zero chemical potential, what would be the expression for the
distribution of energies, du/dε, in a neutrino gas in an appropriate oven?

Section B
8. A helium--neon laser emits only orange photons. Could these be in equilib-

rium with anything? Explain.

9. A ball painted perfectly black has a bright green light shining on it that keeps
it heated at temperature T . Describe or sketch the distribution of energies
absorbed and emitted by the ball. (Hint: The green light is not in equilibrium
with the ball -- or with anything, for that matter -- because it doesn’t have the
equilibrium distribution in frequencies.)

10. What is the energy density of the energy held in the 2.735 K blackbody
radiation left over from the Big Bang? How does this compare with the
energy density (mc2) of particulate matter in the Universe which amounts to
an average of 0.2 protons (mostly in hydrogen atoms) per cubic meter?

11. Calculate the total energy contained in the 2.7 K blackbody background
radiation left over from the Big Bang. The Universe has a radius of about 14
billion light years, and a light year is equal to about 9.5 × 1015 m. Estimate
the temperature of the Universe at a time just after the original explosion
when it had a volume of 1 m3. To do this, assume that all the energy of the
present background radiation was in the Universe at that time and ignore any
coupling to matter.

Section C
12. The Sun’s surface radiates like a blackbody at temperature 5800 K. Its radius

is 7 × 108 m.
(a) How many joules per second does the Sun radiate altogether?
(b) Inside, the Sun is much hotter. In fact, averaging T 4 throughout the

volume of the Sun gives T 4 = (107 K)4. What is the total energy of the
photon gas stored inside the Sun?

(c) If the thermonuclear fusion in the Sun’s core stops tomorrow, how many
more years could the Sun radiate energy at the present rate, before
exhausting all this energy? (1 year = 3.16 × 107 s.)

13. If you double the temperature of an oven, by what factor do the following
things increase?
(a) The total energy of the photon gas.
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(b) The position of the peak in the energy distribution, εmax.
(c) The rate at which energy strikes a wall of the oven.

14. (a) Sketch a plot of n̄(ε) versus ε for bosons with µ = 0 for two different
temperatures.

(b) Set up the integral for the total number of photons in a system, and
show that it increases as T 3. (Hint: See equation 20.2, and make the
substitution x = βε = ε/kT .)

(c) Set up the integral for the total energy in the system, and show that it
increases as T 4.

(d) Does the average energy per photon increase, decrease, or remain the
same as temperature increases?

15. An object is in equilibrium with a photon gas at a temperature of several
thousand kelvins, and I0 is the intensity of radiation incident on its surface.
Make qualitative plots of the fractions of reflected, absorbed, and emitted
radiation (Ir/I0, Ia/I0, and Ie/I0, respectively) as a function of photon energy
ε, if the object looks red when illuminated by sunlight.

16. The radius of the Sun is 7 × 108 m and the radius of the Earth’s orbit is
1.5 × 1011 m. The energy flux leaving the Sun’s surface is 6.4 × 107 W/m2.
What is the flux of solar energy at the distance of the Earth?

17. You have a half cup of very hot coffee, a half cup of room-temperature water,
and only two minutes in which to get the coffee as cool as possible. Should
you add the cool water first and then wait two minutes, or first wait two
minutes and then add the water? Why?

18. Suppose that the Earth acts as a blackbody of radius 6.4 × 106 m and effective
temperature 240 K. (This is not the same as our surface temperature, due to
our atmosphere’s intervention. Most outgoing infrared ultimately leaves from
the upper atmosphere.)
(a) What is the flux of energy leaving the Earth’s surface for outer

space?
(b) What is the total rate of emission of energy by the entire Earth?
(c) The flux of sunlight sweeping through space at our position is 1.4 kW/m2.

Earth’s temperature remains constant on the average. What fraction of
the incident solar radiation is absorbed by the Earth? (Caution: The area
intercepting the sunlight is not the same as the total area of the Earth that
emits.)

19. In a bad dream, you are naked in outer space. You only emit radiation, as
there is little or none to absorb from your environment. Your skin acts like a
blackbody at the infrared wavelengths that it radiates, and your body’s surface
area is about 2 m2. Estimate the following:
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(a) the temperature and area of your skin,
(b) the rate at which energy is emitted by your body,
(c) the kilocalories of energy (1 kcal=1 food Calorie) emitted by your skin

per day,
(d) the number of milkshakes (each containing about 400 kcal of energy)

that you would have to drink per day in order to compensate for the
energy lost from your skin.

(e) Why do you suppose it is biologically advantageous for the blood vessels
in your skin to constrict when your environment is cold?

20. Your skin temperature is about 300 K, and that of your clothing and immediate
environment is normally about 290 K. Assume that your skin has a total area
of 2 m2 and acts like a blackbody at infrared wavelengths.
(a) What is the net rate at which your body radiates energy into the

environment?
(b) One “food Calorie” is actually a kilocalorie = 4.2 × 103 J. How much

food energy do you have to consume per day to replace the energy lost
into your clothing and environment?

21. Newton’s law of cooling states that the rate at which an object cools is pro-
portional to the temperature difference, �T , between it and its environment.
You are going to derive this.
(a) Consider a blackbody of area A and temperature T + �T in an envi-

ronment of temperature T . Calculate the difference between the rates
of energy emission and absorption, keeping only terms to first order in
�T/T . The answer should be in terms of σ, A, T , and �T .

(b) Suppose that the object has heat capacity C. Show that the rate of cool-
ing is given by d(�T)/dt = −constant × �T , where the value of the
constant is given in terms of C, σ, A, and T .

(c) Show that the object cools off in such a way that the difference between
its temperature and that of the environment, �T , decreases exponentially
in time.

22. Why is a teapot shiny silver, rather than black? Why is your car radiator
black?

23. Suppose that you were to direct photons of various wavelengths at the Sun
and wish to know whether they would be reflected or absorbed when they
got there. Using Figure 21.4, plot (qualitatively) the fraction absorbed vs.
wavelength for photons incident on the Sun. On the same graph, plot the
fraction reflected vs. wavelength.

24. Show that when averaged over the +z hemisphere the average value of cos θ

is 1/2, where θ is the angle with the +z axis. How is this relevant to the
calculation of photon flux?
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Section D
25. Why do building codes in some cold climates permit twice the window area

for double-paned glass?

26. Suppose that your body temperature is 300 K and that of your environment
is 273 K (freezing point). Your body’s emissivity is 1 and its srface area is
2 m2. Using radiative losses only, estimate the net rate of heat loss from your
body if you are (a) naked, (b) wearing one layer of clothing, (c) wearing five
layers of clothing.

27. If three identical foils separate regions held at 100 K and 300 K, what are the
temperatures of the three foils? (Hint: See equation 21.15.)

Section E
28. Derive the result 21.20 by using equation 20.6 (pV = E/3) to write p in

terms of E and V and then integrating dE = −pdV for adiabatic processes
(dQ = 0). Then use equation 21.8 to write E in terms of T and V .

29. Comparing results 21.20 and 21.21, you can see that entropy (hence, the
number of accessible states) is not conserved in the free expansion of a
photon gas. Why not?

30. The Universe presently has a radius of about 14 billion light years, and the
temperature of the cosmic background radiation is 2.74 K. Ignoring any
coupling to matter, estimate its temperature when the Universe’s radius was
only 1 light year, or when it was only 1 m. 1 light year = 9.5 × 1015 m. (Think
about whether the expansion is free or not.)

31. A photon gas expands adiabatically from initial temperature and volume
Ti, Vi to a final volume with temperature Tf. Show that the work done is
given by W = (

8π5k4/15h3c3
)

ViT 3
i (Ti − Tf) .

Section F
32. What would be the root mean square voltage fluctuation caused by thermal

noise across a circuit element having 5000 ohms resistance if the circuit is at
room temperature (293 K) and you are measuring frequencies in the range
3 × 1011 − 4 × 1011 Hz?

33. How would the result 21.23 change if, when the thermally generated noise
reaches the end of the circuit element, half exits and the other half is reflected?



Chapter 22
The thermal properties of solids

A Overview 457
B Lattice vibrations 459

B.1 Background 459
B.2 The Debye model 459
B.3 The Debye cutoff 460
B.4 Comparison with experiment 463
B.5 Low-temperature fluctuations 463

C Conduction electrons 466
C.1 Overall properties 466
C.2 A nearly degenerate fermion gas 467

D Heat capacities 468

A Overview

As we learned in Sections 4B and 10E, the atoms in solids are anchored in place
by electromagnetic interactions with neighboring atoms, making each a harmonic
oscillator in three dimensions. The solid may have conduction electrons as well
(Figure 22.1). The “classical” counting of degrees of freedom would give each
atom six (three kinetic and three potential) and each conduction electron three
(translational only). Because an average thermal energy (1/2)kT is associated
with each degree of freedom, the classical prediction for the heat capacity of a
solid with Na atoms and Ne conduction electrons would be

CV =
(

∂ E

∂T

)
V

= 3Nak + 3

2
Nek (classical prediction). (22.1)

Experimental measurements of the heat capacities of solids show this to be
wrong. For sufficiently low temperatures, the contribution from the lattice of
atoms always drops well below the classical prediction (Figure 15.5), and the
contribution from the conduction electrons is almost nonexistent.

In this chapter, we learn that quantum effects are responsible for these failures
of the classical approach. Because the atomic vibrations are quantized (subsection
1B.8 and Section 10E), many are confined to the ground state as the temperature

457
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Figure 22.1 We can view
a solid as a system of
atomic oscillators, and it
might also include a gas
of conduction electrons
that are confined within
its boundaries.

Figure 22.2 Only
electrons near the Fermi
level (εf ≈ µ) have any
freedom at all, because
only these electrons
might be able to find
vacant neighboring states
into which they can move
in response to thermal
agitation or other stimuli.

is lowered. This quantum confinement reduces the number of degrees of freedom
and causes a corresponding reduction in the solid’s thermal energy.

Quantum effects are even more restrictive for the conduction electrons,
because at normal temperatures they are nearly degenerate. Nearly all electron
states up to the Fermi level (εf = µ) are occupied, and nearly all those above this
level are vacant (Figures 19.1 and 22.2). Because the low-lying states are full, the
electrons in these states can find no vacant neighboring states into which to move.
This means that they cannot change their state in response to thermal agitation,
applied electric fields, or any other stimulus. Only those near the Fermi level have
any freedom. But these electrons are a small minority, so they can make only a
very small contribution to the thermal properties of a solid.
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In this chapter we use quantum statistics to learn how these quantum effects
influence the thermal properties of solids, and we separate the latter into two
parts, those due to the lattice of atoms and those due to the conduction electrons.

B Lattice vibrations

B.1 Background

In a 1907 paper, Albert Einstein proposed a very simple model to explain lattice
vibrations in solids and the failure of the classical approach at low temperatures.
Its predictions were qualitatively correct (homework). According to this model,
for each of the 3Na atomic simple harmonic oscillators there is a single quantum
state of energy hω0.1 The occupation number of this state determines the level of
excitation of that oscillator. The significance of this paper was that it demonstrated
the importance of using quantum statistics (via the occupation number) to explain
the low-temperature behavior.

B.2 The Debye model

This early success led in 1912 to an important refinement by Peter Debye, who
treated the vibrations in solids as a phonon gas. As we learned in subsection
10E.1, phonons are quantized vibrations. They are massless, and their energy is
given by

ε = h f = hcs

λ
, (22.2)

where f is the frequency, λ is the wavelength, and cs is their speed through the
solid.

This speed may be different for different polarizations. The longitudinal waves
normally travel faster than do transverse waves of either polarization. Since we
must sum over the three polarizations in determining the total number of phonon
states, we find it convenient to define an average according to

1

c3
1

+ 1

c3
2

+ 1

c3
3

≡ 3

c3
s

(22.3)

where c1, c2, c3 are the speeds for the three polarizations. We use this prescription
in the density of states of equation 20.1 for a gas of massless particles:

g(ε) = Cε2, with C = 12πV

h3c3
s

. (22.4)

Since phonons have three polarizations, they can be treated as spin-1 bosons,
and their chemical potential is zero for the same reason as for photons in the

1 ω0 is adjusted to fit the data. Each atom can oscillate in three dimensions, making a total of 3Na

harmonic oscillators. Energies are measured relative to the ground state energy ε0 = (1/2)hω0

(equation 1.18).
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Figure 22.3 Elastic
waves in solids must
have wavelengths greater
than twice the spacing
between atoms (λ ≥ 2d).
As illustrated by the
bottom two lines,
wavelengths shorter than
this are equivalent to
longer ones.

previous chapter (equation 21.3). That is, the number of lattice vibrations
increases and decreases in response to changes in the solid’s temperature and
thermal energy. Their number adjusts to maximize the entropy in compliance
with the second law. When the entropy is a maximum, its derivative is zero,

µ = −
(

T
∂S

∂ N

)
E,V

= 0.

The distribution of particles is the product of the density of states and the num-
ber of particles in each (equation 19.12). Using equation 22.4 for the density of
states and equation 19.3b for the occupation number, the distribution of phonons
is

dN = g(ε)n(ε)dε = C
ε2dε

eβε − 1
, where C = 12πV

h3c3
s

. (22.5)

B.3 The Debye cutoff

One important way in which phonons must differ from other gases is that there
is an upper limit to their energy, which is called the Debye cutoff energy and is
given the symbol εD. As illustrated in Figure 22.3, the phonon wavelength cannot
be shorter than twice the atomic spacing. This lower limit on wavelength places
an upper limit on phonon energy. Since the volume per atom is V/Na, the average
distance between atoms is (V/Na)1/3 and so the maximum phonon energy is (see
equation 22.2)

εD = hcs

λmin
≈ hcs

2(V/Na)1/3
= 0.5hcs

(
Na

V

)1/3

. (22.6)
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Table 22.1. Debye cutoff energies (εD) and Debye temperatures �D(εD = k�D) for the lattice vibrations,
and Fermi energies (εf ≈ µ) for the conduction electrons for various solids

Material εD (10−2 eV) �D (K) µ (eV) Material εD(10−2 eV) �D (K) µ (eV)

sodium 1.36 158 3.23 copper 2.96 343 7.00
magnesium 3.45 400 7.13 silver 1.94 225 5.48
aluminum 3.69 428 11.63 gold 1.42 165 5.51
zinc 2.82 327 9.39 lead 0.90 105 9.37
potassium 0.78 91 2.12 silicon 5.56 645 −
calcium 1.98 230 4.68 diamond 27.8 2300 −
iron 4.05 470

Debye suggested another way to determine the maximum phonon energy, and
it gives nearly the same answer. We know that the motion of one simple harmonic
oscillator can be described by one characteristic frequency, that of two coupled
oscillators can be described by two characteristic frequencies, and so on. So a
solid of 3Na coupled oscillators has 3Na states, each with its own characteristic
frequency. Therefore, the sum over all states must give 3Na. This places an upper
limit (εD) on the oscillator energy:

3Na =
∫ εD

0
g(ε)dε = 12πV

h3c3
s

∫ εD

0
ε2dε = 4πV

h3c3
s

ε3
D. (22.7)

Solving this for εD gives

εD = hcs

(
3Na

4πV

)1/3

= 0.62hcs

(
Na

V

)1/3

, (22.8)

where we have written (3/4π )1/3 = 0.62 in order to see how close the result
22.8 is to the result 22.6, which we obtained by requiring the minimum phonon
wavelength to be twice the atomic spacing.

From this result, you can see that the Debye cutoff energy is a simple function
of the density of atoms Na/V and the phonon speed cs. It is sometimes expressed
in terms of the Debye frequency ωD, or the Debye temperature �D which are
defined by

εD ≡ hωD ≡ k�D. (22.9)

Values of εD and �D for several common solids are listed in Table 22.1.
The result 22.8 allows us to write the constant factor in the phonon density of

states (equation 22.4) as:

C = 12πV

h3c3
s

= 9Na

ε3
D

,
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Figure 22.4 The
distribution of phonons in
a solid is the product of
the density of phonon
states g(ε) times the
occupation number n (ε).

so the distribution of phonons 22.5 is often written in the following way
(Figure 22.4):

dN =





9Na

ε3
D


 ε2dε

eβε − 1
for 0 ≤ ε ≤ εD,

0 for ε > εD.

(22.10)

The total energy of the system is the sum of the energies of the individual
phonons:

E =
∫

εdN = 9Na

ε3
D

∫ εD

0

ε3dε

eβε − 1

= 9Na

ε3
D

(kT )4

∫ εD/kT

0

x3dx

ex − 1
,

where the last line follows by substitution of x = βε = ε/kT . This result for
the thermal energy of the lattice is often expressed as the product of the classical
value (3NakT ) times the Debye function D(T ):

E� = 3NakT D(T ), where D(T ) = 3

(
kT

εD

)3 ∫ εD/kT

0

x3dx

ex − 1
. (22.12)

In general, evaluating the Debye function D(T ) is difficult and best done
numerically. It increases from 0 in the low-temperature limit to 1 in the high-
temperature limit, where the classical result E = 3NakT is valid (Figure 22.5).
For these two extremes, it can be shown (homework) that the thermal energy of
lattice vibrations has the following values:

El =




3Naπ
4k4

5ε3
D

T 4 (low temperature limit, kT � εD),

3NakT (high temperature limit, kT � εD).

(22.13)



The thermal properties of solids 463

1.0

3

2

1

0 0.5 1

0.8

0.6

0.4

0.2

0
0 0.5 1.0 1.5 2.0 2.5 3.0

D
(T

)

C
V

/ R

T /ΘD
T /ΘD

Cu 343 K

Ag 225 K

Pb 105 K

C 1860 K

Figure 22.5 (Left) The
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common solids are listed
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Molar heat capacities for
various solids as a
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The solid line is the Debye
model prediction. (After
M. A. Omar, Elementary
Solid State Physics,
Addison-Wesley, 1975.)

B.4 Comparison with experiment

The experimental determination of thermal energy is accomplished through mea-
surements of heat capacities, which later in this chapter we investigate further.
For now, we simply note that the Debye model gives remarkably accurate results,
as is illustrated for some representative solids in Figure 22.5. As you can see in
this figure, all solids fit the same curve if we measure the temperature for each in
terms of its Debye temperature (T/�D). The same would be true for Figure 15.5.

In real solids, there may be differences in atomic configurations, binding
strengths, and spacing in different directions. The wave speed may depend on
the direction of travel and the phonon polarization. Therefore, in real solids the
density of states is a superposition of many components. The Debye model, in
contrast, assumes just one average atomic spacing, one average speed of sound,
and one average cutoff value. The Debye-model density of states corresponds to
an average of all the individual components of the densities of states for a real
solid (Figure 22.6).

You may wonder how the Debye-model results can be so accurate, if real
densities of states are so different from that of the Debye model. The reason is
that all measured thermal properties require a summation over states, giving us
an integrated average. The actual details of the densities of states, such as local
maxima and minima, are therefore much less important than the overall features.
The Debye model does indeed represent an appropriate summed average for the
individual components of the densities of states, and that is why it works so well.

B.5 Low-temperature fluctuations

From earlier work, we know that the relative fluctuation for N events is pro-
portional to N−1/2. So at high temperatures, where all 3Na phonon states are
filled, fluctuations in the lattice vibrations are far too small to be detected. But at
low temperatures, where only a small fraction of the phonon states are filled, the
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Figure 22.6 Plots of
actual densities of states
(solid lines) and those
from the Debye model
(broken lines), all drawn
to the same scale, for
sodium, vanadium,
copper, and lithium
fluoride.

situation is different. Equation 18.6′ (σ 2
E = kT 2CV ) and the result 22.13 can be

used to show that the relative fluctuation at low temperatures is given by

σ 2
E

E2
= 20

3π 4 Na

( εD

kT

)3
= 0.0684

Na

(
�D

T

)3

. (22.14)

Thus a 1 cm3 sample of a typical material would need to be below about 100 µK
in order to experience relative fluctuations above the 1% level (homework).

Summary of Sections A and B

The classical prediction for the heat capacity of a solid with Na atoms and Ne

conduction electrons is wrong. Quantum effects cause considerable modification.

The electron contribution is almost nonexistent, and the lattice contribution falls

well below 3NakT at low temperatures. Einstein proposed a very simple model for

the lattice vibrations, which produced the correct qualitative behavior and

demonstrated the importance of quantum statistics.

The Debye model envisions lattice vibrations as a phonon gas, where the phonons

are discrete quanta of vibrational energy that travel through the solid with speed cs.

They are massless bosons with zero chemical potential. In order to include the three
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polarizations in the sum over states, we find it convenient to define an average

according to (equation 22.3)

1

c3
1

+ 1

c3
2

+ 1

c3
3

≡ 3

c3
s

.

With this, the distribution of phonons in a solid according to the Debye model is

(equation 22.5)

dN = C
ε2dε

eβε − 1
, where C = 12πV

h3c3
s

.

There is an upper limit to phonon energies. A solid of Na atoms can be regarded

as 3Na coupled harmonic oscillators, so there are 3Na characteristic frequencies.

Therefore the sum over all states must equal 3Na. This provides the upper limit on

the energy of a state (equation 22.7):

3Na =
∫ εD

0
g(ε)dε = 12πV

h3c3
s

∫ εD

0
ε2dε = 4πV

h3c3
s

ε3
D.

Solving for εD gives (equation 22.8)

εD = hcs

(
3Na

4πV

)1/3

= 0.62hcs

(
Na

V

)1/3

,

which is close to the answer we get by insisting that the wavelength can be no

shorter than twice the atomic spacing. This upper limit is called the Debye cutoff

energy, and is frequently expressed as the corresponding Debye frequency or Debye

temperature (equation 22.9):

εD ≡ hωD ≡ k�D.

The resulting distribution of phonons in a solid is given by (equation 22.10)

d N =





9Na

ε3
D


 ε2dε

eβε − 1
for 0 ≤ ε ≤ εD,

0 for ε > εD.

The total energy of the system is the sum of the energies of the individual

phonons. With the substitution of variables x = βε this can be written in the form

(equation 22.12)

E� = 3NakTD(T ), where D(T ) = 3

(
kT

εD

)3 ∫ εD/kT

0

x3dx

ex − 1
.

The Debye function D(T ) ranges in value from 0 to 1 in the low- and

high-temperature limits, respectively, and reproduces the experimental data well.

The Debye model is surprisingly accurate in view of the fact that the real density

of phonon states is a superposition of many different components. The reason for

this is that model predictions require us to sum over all states, and the Debye density

of states represents a good integrated average of the many different components that

are present in real solids.
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Figure 22.7 The
characteristic width of the
tail of the Fermi
distribution is equal to kT :
the tail widens with
increased temperature.
Only electrons in the tail
have any freedom, as
only they have
neighboring states into
which they can move.
(For illustrative purposes,
the above tail widths have
been exaggerated.)

C Conduction electrons

C.1 Overall properties

Most electrons remain on their atoms and vibrate with them. But conduction
electrons are not bound to individual atoms and make up a separate system. They
are spin-1/2 fermions, and in most conductors they are highly degenerate. The
occupation number has a narrow tail near the Fermi level (Figure 22.7). The width
of the tail, coming from the factor e(ε−µ)/kT , is roughly equal to kT and is small
compared with the depth of the Fermi sea µ, so the fraction of electrons in the
tail is typically between 10−2 and 10−3:

fraction of electrons in tail ≈ kT

µ
< 10−2.

Only electrons in the tail have vacant neighboring states into which they can
move. So only those in the tail have the freedom of movement that allows them
to contribute to the thermal properties of the system.

As the temperature increases, both the number of electrons in the tail and the
average energy of each electron increase in proportion to kT . Therefore, their
contribution to the system’s thermal energy is proportional to T 2:

Ee = number of free electrons × thermal energy of each ∝ T 2.

Thus the internal energy of the conduction electrons is that of the degenerate
Fermi sea plus a small “tail” contribution proportional to T 2:

Ee = E0 + bT 2 (b is a positive constant). (22.15)
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C.2 A nearly degenerate fermion gas

The behavior 22.15 is also what we expect if we treat this nearly degenerate
fermion gas with the tools of subsection 20D.3. From equations 20.19 and 20.15,
the thermal energy of the electrons is given by

Ee ≈ Ne
3

5
εf

[
1 + 5π2

12

(
kT

εf

)2
]

(22.16)

with

εf = h2

2m

(
3Ne

8πV

)2/3

. (22.17)

Several things are noteworthy about this result.

� First, we can see that the thermal energy of a degenerate electron gas does indeed

increase quadratically with the temperature as we expected (22.15). Furthermore, we

now know the values of the constants, so we can make quantitative as well as qualitative

predictions.
� Second, if we put into equation 22.17 the electron density Ne/V for typical metals,

we find that the Fermi level is around 4 to 8 eV (homework, or see Table 22.1). If we

compare these values with kT , which is about 0.025 eV at room temperature, we can

see that typical thermal energies are extremely small compared with the Fermi level. As

expected, the gas is highly degenerate, and thermal agitation has relatively little effect

on it.
� Third, if we wish to write the Fermi energy in the form εf = p2/2m, where p = h/λ

(equation 1.2), then we find from equation 22.17 (homework) that

λ =
(

8π

3

)1/3 ( V

Ne

)1/3

= 2.03

(
V

Ne

)1/3

.

So the wavelength of these highest-energy electrons is roughly twice the average electron

spacing. Notice the similarity with lattice vibrations, for which the wavelength of the

highest-energy phonons is also roughly twice the atomic spacing.

Summary of Section C

In a typical conductor, more than 99% of the conduction electrons are trapped in the

Fermi sea, and less than 1% are in the tail. Only electrons in the tail can contribute

to the thermal properties. The product of the number of relatively free electrons

(∝ kT ) times the thermal energy of each (∝ kT ) is quadratic in temperature. Thus

the internal energy of the conduction electrons is that at absolute zero plus a small

increase proportional to T 2(equation 22.15):

Ee = E0 + bT 2.
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We can treat the conduction electrons as a nearly degenerate fermion gas, for

which the internal energy is given by (equation 22.16)

Ee ≈ Ne
3

5
εf

[
1 + 5π2

12

(
kT

εf

)2
]

,

with (equation 22.17)

εf = h2

2m

(
3Ne

8πV

)2/3

.

Interesting features of this include the following.

� It is what we anticipated from 22.15, and it also gives the numerical values of the constants

in 22.15.
� It confirms our expectation that the conduction electrons should be highly degenerate.
� It reveals that the wavelengths associated with the highest-energy electrons are about twice

the electron spacing.

D Heat capacities

We now examine the heat capacity of a solid.2 At normal temperatures the lattice
contribution dominates. Taking the derivative of the Debye-model prediction for
the lattice’s thermal energy, 22.12, we find that the model is in excellent agreement
with the experimental data at all temperatures (Figure 22.5). Although the result
is complicated for intermediate temperatures, it becomes simple in the high- and
low-temperature limits (see equation 22.13):

CV,Debye =
{

3Nak, high-temperature limit,

K lT 3 low-temperature limit,

where

K l = 12Naπ
4k4

5ε3
D

. (22.18)

In the homework problems you will show that the Einstein model gives the same
high-temperature result but differs at low temperatures.

Regarding the conduction electrons, their contribution to the heat capacity is
obtained by taking the derivative of their thermal energy from equation 22.16,
which yields

CV, e = KeT, where Ke = Neπ
2k2

2εf
. (22.19)

2 For constant volume dV = 0, so the first law reads dE = dQ. (Ignore µdN because µphonon = 0.)

Therefore the heat capacity at constant volume is CV = (∂ Q/∂T )V = (∂ E/∂T )V . As we saw at

the end of subsection 10F.1, CV and Cp are nearly the same for solids, so we normally don’t make

a distinction between the two.
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Figure 22.8 Plot of molar
heat capacity CV/T vs. T 2

for copper at very low
temperatures. The
intercept at T2 = 0
represents the
contribution from the
electron gas, and the fact
that the plot is linear in T 2

demonstrates that the
Debye model describes
the lattice’s contribution
correctly at these low
temperatures. (From
Corak, Garfunkel,
Satterthwaite, and
Wexler, Phys. Rev. 98,
1699, 1955.)

Since the number of electrons in the tail of the Fermi distribution is so small, they
have a negligible effect on the heat capacity of metals at normal temperatures,
where the 6Na degrees of freedom of the lattice dominate. However, at low
temperatures, the heat capacity of the electron gas goes to zero linearly with T
whereas that of the lattice goes to zero more rapidly as T 3. This means that, at
sufficiently low temperatures, the small electron contribution dominates. From
equations 22.18 and 22.19, we see that the combined heat capacity from the lattice
and conduction electrons at low temperatures is

CV = KeT + K lT
3 (low temperatures) (22.20)

or, equivalently,

CV

T
= Ke + K lT

2. (22.21)

So we expect that the plot of CV /T vs. T 2 should be linear in T 2, the intercept at
T = 0 representing the free electron contribution Ke. As is seen in Figure 22.8,
this is indeed what happens. Furthermore, the experimental values of both the
slope Kl and the intercept Ke generally agree with the values calculated from
equations 22.18 and 22.19 (homework). This gives us confidence that our models
represent Nature fairly well. Treating the lattice vibrations as a phonon gas and
the conduction electrons as a degenerate fermion gas seems to work.

Summary of Section D

Because the number of electrons in the tail of the Fermi distribution is so small, the

thermal energy of the lattice dominates that of the conduction electrons at ordinary

temperatures. The Debye-model prediction for the solid’s heat capacity fits the

experimental data well over a wide range of temperatures, giving the following
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results in the high- and low-temperature limits (equation 22.18):

CV, Debye =
{

3Nak high temperature limit,

K lT 3 low temperature limit,

where

K l = 12Naπ
4k4

5ε3
D

.

Treating the conduction electrons as a degenerate fermion gas, their heat

capacity is (equation 22.19)

CV,e = KeT, where Ke = Neπ
2k2

2εf
.

At very low temperatures, the heat capacity of the lattice goes to zero as T 3,

whereas that of the electron gas goes to zero linearly with T. So, at sufficiently low

temperatures, the lattice contribution no longer dominates and the total heat capacity

has the form (equation 22.20)

CV = KeT + K lT
3 (low temperatures).

If we plot CV /T versus T 2, we get the following form, which agrees with

measurements (equation 22.21):

CV

T
= Ke + K lT

2.

Problems

Section A
1. Make a rough estimate of the force constant κ that holds the atoms of a typical

solid in place. Use the facts that the average energy per degree of freedom
is (1/2)kT and that a typical root mean square value for the amplitude of
oscillation at room temperature is 10−11 m.

2. We are going to investigate the feasibility of treating atoms as harmonic
oscillators, even if their potential wells are not parabolic. Consider a particle
in one dimension that has potential energy V (x) = −V0e−x2

.
(a) What is the equilibrium position of the particle? (I.e., where is V(x) a

minimum?)
(b) Write out the Taylor series expansion for V(x) about the equilibrium

position, keeping only the zeroth, first, and second order terms in x.
(Note that this makes it a harmonic oscillator.)

(c) By what percentage does this expansion differ from the real value of
V (x) at x = 0.1? At x = 0.5?

3. If the atoms in conductors behaved as classical harmonic oscillators and the
conduction electrons as a classical ideal gas, what would be the molar heat
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capacity (CV = dE/dT ) of a metal if each atom contributes two electrons to
the conduction band?

4. In quantum mechanics we learn that the average energy of a simple harmonic
oscillator is given by ε = (n + 1/2) hω, with n = 0, 1, 2, . . . Classically, the
energy is given by ε = (1/2m)p2

x + (1/2)κx2.
(a) What would be the classical value of the heat capacity for N of these

oscillators? (Use equipartition.)
(b) If the heat capacity fell well below the classical value for temperatures

below 190 K, what would you estimate the frequency ω to be?
(c) In real solids having Na atoms, we might expect 6Na degrees of freedom,

each with an average energy (1/2)kT , giving a total thermal energy of
3NakT . But at temperatures below the Debye temperature, the internal
energy is lower than this. Does this violate the equipartition theorem?
Explain.

Section B
5. According to the Einstein model, all 3Na harmonic oscillators have the same

fundamental frequency, given by ε0 = hω0, and the level of excitation of
each is given by the occupation number n̄ = 1/(eε0/kT − 1). The value of ε0

(or ω0) is chosen to fit the data.
(a) Show that the lattice’s thermal energy is 3Naε0/(eε0/kT − 1) according

to this model.
(b) We find that, for lead, E ≈ 3NakT for temperatures above about 100 K.

Use this information to estimate very roughly the value of ε0 or ω0 for
lead.

(c) Using the variable x = ε0/kT , write down an expression for the ratio
E/3NakT as a function of x .

(d) Make a qualitative plot of E/3NakT vs. the variable x . Is x = 0 the low-
or high-temperature limit?

6. (a) Show that the Einstein model (problem 5) predicts the internal energy
of a solid to be 3Naε0e−ε0/kT in the low-temperature limit and 3NakT in
the high-temperature limit.

(b) What would be the heat capacity, CV , in each of these limits?

7. Using the Debye model and the parameter x = εD/kT , express the ratio
E/3NakT as a function of x .

8. We find that E ≈ 3NakT at temperatures above 100 K for lead and above
2300 K for diamond. The mass of a lead atom is 3.4 × 10−25 kg, and
the mass of a carbon atom is 2.0 × 10−26 kg. For each, give a rough
estimate of the value of the force constant κ holding an atom in place.
Use ωD ≈ (κ/m)1/2.
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9. The oscillations for a phonon traveling in the positive x direction can be
approximated by a plane wave, y = A cos(kx − ωt), where A is the amplitude,
k = 2π/λ is the wave number, and ω = 2π/T is the angular frequency.
(a) What is the speed of this phonon, cs, in terms of ω and k?
(b) If the momentum and energy are given by p = hk and ε = hω, how are

the momentum, energy, and wave speed interrelated?

10. (a) Make a sketch similar to Figure 22.3 for the displacement of atoms when
the phonon’s wavelength is exactly 2/5 of the atomic separation d.

(b) Is this distinguishable from a phonon with wavelength (2/3)d?
(c) Both these would be indistinguishable from a phonon whose wavelength

λ is longer than the atomic separation: λ = xd with x ≥ 2. What is the
value of x?

11. In a certain solid the atomic separation is about 0.2 nm and the speed of
sound (i.e., the speed of travel of the phonon vibrations) is 1000 m/s. What
is the maximum phonon energy according to the Debye model?

12. The density of lead is 13.6 g/cm3 and the mass of an atom is 3.4 × 10−25 kg.
Calculate the following:
(a) (Na/V )1/3,
(b) the speed of sound cs. (Use the value of εD for lead from Table 22.1.)

13. For a certain solid, the Debye temperature is 290 K. What are the Debye
cutoff energy εD and Debye frequency ωD for this material?

14. Two different solids consist of the same number of atoms, and vibrations
travel with the same speed in both. But the atomic spacing in solid A is twice
as large as the atomic spacing in solid B.
(a) For which solid will the cutoff energy εD be the larger? By how many

times?
(b) At low temperatures, which solid will have the largest internal energy?

By how many times?

15. Show that the Debye function D(T ) in equation 22.12 and Figure 22.5 has
the following values in the given limits:

D(T ) → (π4/5)(kT/εD)3 for kT � εD (low-temperature limit);

D(T ) → 1 for kT � εD (high-temperature limit).

You may need to use ∫∞
0 x3dx/(ex − 1) = π4/15, and the expansion ex ≈

1 + x, for x � 1. Use this to confirm the result 22.13 for the thermal energy
in the low- and high-temperature limits.

16. Consider the vibrations in a two-dimensional lattice of Na atoms (i.e., a
thin film) to be represented by a two-dimensional phonon gas. Assume that
longitudinal and transverse phonon modes both travel with the same speed,
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cs. The total area of this lattice is A. Find expressions for the following in
terms of cs, Na, and A:
(a) the density of phonon states g(ε),
(b) the maximum phonon energy.

17. Use equations 22.13 and 18.6′ to show that the relative fluctuation in the
energy of the lattice vibrations for a solid in contact with a cold reservoir
is given by (σ 2

E/E2) = (0.0684/Na)(θD/T )3. (For constant volume we have
dV = 0, so the first law reads dE = dQ. Ignore µdN because µphonon =
0. Therefore CV = (∂ Q/∂T )V = (∂ E/∂T )V .) Consider a typical solid with
atomic density ≈ 1029/m3 and θD ≈ 300 K. If a sample measures 1 mm on
a side, at what temperature would the relative fluctuation reach 1%?

18. Let’s see how the phonon model fits energy excitations in liquid helium at very
low temperatures. The speed of sound in liquid helium is 238 m/s and only
longitudinal waves can propagate through a liquid. Its density is 145 kg/m3

and its molar mass is 6.64 × 10−3 kg. Calculate the Debye temperature and
the specific heat capacity for cold liquid helium. (Beware: From equation
22.3 you can see that you will have to make the replacement 3/c3

s → 1/c3
s

in our formulas since there is only one wave polarization.) Compare your
answer with the experimental value, cV = (20.4 J/kg K4)T 3.

Section C
Use the free electron model where appropriate.

19. The spacing between identical (i.e., same spin direction) protons or neutrons
in a nucleus is about 3 × 10−15 m, and their mass is 1.67 × 10−27 kg.
(a) What is the characteristic kinetic energy of a nucleon in a nucleus? (Hint:

Use the uncertainty principle.)
(b) At what temperature would such a system of fermions have to be, in

order not to be degenerate?

20. What would the characteristic spacing of conduction electrons have to be
in order for them to be reasonably nondegenerate at 295 K? (See condition
19.9.)

21. (a) Write down an expression for the characteristic kinetic energy p2/2m for
conduction electrons, in terms of m, h, and Ne/V . (Note that because the
electrons may be spin up or spin down, the density of identical fermions
is Ne/2V . Use the uncertainty principle.)

(b) How does the result (a) compare with the Fermi energy of a system of
conduction electrons as given in equation 22.17?

(c) Show that the Fermi energy of equation 22.17 corresponds to an electron
wavelength of about twice the average electron spacing.
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22. In a certain system of degenerate conduction electrons, only 1015 are “free”
at 200 K.
(a) Roughly what is the total thermal energy of these electrons?
(b) At 400 K, how many electrons are free and what is their thermal energy?

23. In a certain solid at 40 K (��D), the lattice contribution to the thermal energy
is 104 times greater than the contribution from the conduction electrons.
(a) At what temperature would the thermal energy of both systems be the

same?
(b) At what temperature would the electrons have 100 times greater thermal

energy than the lattice?

24. According to equation 22.16, we can write the internal energy of a gas of
degenerate electrons as E = (3/5)Neεf(1 + bT2). Given that typical values
of εf for conduction electrons in metals are around 7 eV, roughly what is the
value of the constant b?

25. The radius of a uranium nucleus is 7 × 10−15 m. It has atomic number 92 and
mass number 238. Protons and neutrons are each spin-1/2 particles. Find
(a) the densities of the neutrons and of the protons,
(b) the Fermi temperature εf/k for each of these.

26. The density of matter in the center of the Sun is about 150 g/cm3, and the
temperature is about 1.2 × 107 K. Nearly all the mass is made up of individual
protons, and there is a roughly equal number of free electrons. Are the protons
nearly degenerate? How about the electrons?

27. The 3He isotope is a fermion. It has two protons, one neutron, two electrons,
and its net spin is 1/2. Hence, a gas of 3He atoms is a fermion gas. At
standard temperature and pressure (1 atm, 0◦C), a mole occupies 22.4 liters.
What is the Fermi temperature, εf/k? Is the gas degenerate?

28. What is the ratio kT/εf for the conduction electrons in a metal with εf = 7 eV
at room temperature?

29. The number of electrons within a small range of energies �ε is given by
the product of the number of states g(ε)�ε and the occupation number of
each, n(ε). For electrons in the “tail” of the Fermi distribution, we have
ε ≈ εf, �ε ≈ kT , and n(ε) averaging 1/2 (it goes from 1 to 0 in this region).
Using equation 22.17 to write the number of electrons Ne in terms of the
Fermi energy εf and equation 20.1 for the density of states, show that the
fraction of the conduction electrons in the “tail” of the Fermi distribution at
room temperature would be about (3/4)(kT/εf). What is this fraction at room
temperature (295 K) for a typical value of εf, 7 eV?

30. In a certain metal there are 6.4 × 1028 conduction electrons per cubic meter.
Assuming that the fermion gas model is correct, what is the energy of the
Fermi surface, in eV?
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31. The density of gold is 19.3 × 103 kg/m3, and its atomic mass number is
197. Each gold atom gives one electron to the conduction band. For these
electrons, what is (a) the density, Ne/V , (b) the chemical potential, µ? (Hint:
According to equation 20.19 the chemical potential is equal to the Fermi
energy to within a factor (kT/εf)

2.)

32. The density of copper is 8.9 × 103 kg/m3 and its atomic mass number is 64.
Each copper atom gives one electron to the conduction band. What is the
Fermi energy for these conduction electrons?

33. Consider a system of conduction electrons with εf = 8 eV. How much larger
is their internal energy at room temperature (295 K) than at absolute zero?

Section D
34. In a mole of a certain solid, εD = 0.02 eV, εf = 10 eV, and Na = Ne = NA.

(a) Using this information, evaluate the constants Kl and Ke that appear in
equation 22.20 for the molar heat capacity of a solid at low temperatures.
(See equations 22.18 and 22.19.)

(b) At what temperature would the electron and lattice contributions to the
molar heat capacity be equal?

(c) At a temperature one tenth of that calculated in part (b), which contribu-
tion to the heat capacity will be larger and by how many times?

35. From the slope and intercept of the data displayed in Figure 22.8, calculate
the Debye cutoff energy εD for the lattice and the Fermi level εf for the
conduction electrons for copper.

36. The speed of sound in copper is cs = 2.60 km/s, its density is 8.9 g/cm3,
its atomic mass number is 64, each atom contributes one electron to the
conduction band, and the Fermi energy is 7.00 eV. From this information,
calculate the following:
(a) the densities Na/V and Ne/V ,
(b) the values of εD, ωD, �D,

(c) the molar heat capacity of the copper lattice at T � �D,
(d) the value of the two constants Kl and Ke for a mole of copper (equations

22.18 and 22.19).
(e) Compare the two values in (d) with those you found from the graph in

Figure 22.8 (problem 35).
(f) From the results of part (d), beneath what temperature would you expect

the heat capacity of conduction electrons to dominate that of the lattice?

37. The density of gold is 19.3 × 103 kg/m3, its atomic mass number is 197, and
the Debye energy is 0.0142 eV. The Fermi level for its conduction electrons
is at εf = 5.51 eV. At a temperature of 2 K, find (a) the lattice’s contribution
to the molar heat capacity, (b) the conduction electrons’ contribution to the
molar heat capacity.
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38. Show that the Debye-model prediction for the lattice heat capacity is C =
3Nak[4D(T ) − (3εD/kT)/(eε/kT − 1)]. You may need to use a fundamental
theorem of calculus, (d/dx)

∫ x
a f (t)dt = f (x), and the chain rule.

39. Consider a “supermetal,” which will not melt at any temperature. Carefully
make a qualitative plot (not to scale) of the heat capacity vs. temperature
for this material, which takes into consideration the contributions of both
the lattice and the conduction electrons for all ranges of temperature. Let
N = Na = Ne and label the C-axis in units of Nk. Be sure that your plot
considers the following effects.
(a) For very low T we have T 3 � T , so only the conduction electrons con-

tribute.
(b) For medium T we have T 3 > T , so the lattice term dominates.
(c) For high T (kT > εD), the lattice term becomes constant but then the

electron term has a slow linear increase in T.
(d) For very high T the conduction electrons are no longer degenerate, and

the classical value of the metal’s heat capacity is reached.
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In this chapter, we use quantum statistics to help us understand the distinctive
electrical properties of conductors, semiconductors, and insulators. We have pre-
viously learned that although the occupation number has the same form for all
systems, the spectrum of accessible states varies from one to the next. For this rea-
son, we begin this chapter with a brief and simplified overview of band structure.

A Band structure

A.1 The splitting of levels

As atoms are brought close together, the overlapping of their electron clouds
allows electrons to move from one atom to another. These interactions with their

477



478 Introduction to thermodynamics and statistical mechanics

Two atoms

Many atoms

less overlap

1

2

3

1 1

22
3 3

1

2
3

more overlap

e− e−
e−

e−

e

e

e e

Figure 23.1 (Top) A
schematic diagram,
showing that when as
identical atoms are
brought together, their
outer electrons may be
shared. The identical
electron states of the
isolated atoms split into
slightly different states for
mutually shared
electrons. (Bottom) When
N atoms come together,
each electron state splits
into a band of N different
states. The larger the
overlap of atoms, the
greater the spreading. So
in general the bands are
wider when the atoms are
closer together and the
bands for outer states are
wider than those for inner
states.

neighbors cause shifts in the allowed electron energies. What were initially states
of identical energies in isolated identical atoms turn into “bands” of very closely
spaced states for the shared electrons in groups of atoms.

A.2 Band widths and structure

In general, the outer states of higher energy experience greater overlap, which
usually results in greater splitting and wider bands (Figure 23.1). Within any
band, the density of states usually is largest near the middle and falls off near the
edges (Figure 23.2). Electrons preferentially fill the lowest energy states, so at
low temperatures the lower bands are full and the higher bands are empty.

The highest completely filled band in the T → 0 limit is called the “valence
band.” Because it is full, there are no empty states into which these valence elec-
trons can move. (Although pairs could trade places, they are identical particles,
so it is the same as staying put.) So we can think of these valence electrons as
confined to their parent atoms. They cannot contribute to the electrical or thermal
properties of the material.

The next higher band is called the “conduction band.” It is either empty or
partially filled, so it contains a myriad of vacant states through which electrons
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Figure 23.2 Typical shapes of the density of states as a function of energy. The
lower-energy bands tend to be narrower and therefore more compressed. A good
conductor must have an unfilled outer band, because the electrons must have empty
states into which they can move. (top) This would happen if the atoms had unpaired
outer electrons, thus giving the outer band fewer electrons than states. (bottom) It
could also happen if the last filled band overlaps with the next higher empty band.

can move in response to external stimuli such as electrical fields. Conductors have
large numbers of electrons in this band, whereas semiconductors and insulators
have few or none.

B Conductors

B.1 Unfilled bands

Good conductors must have both large numbers of mobile electrons in the con-
duction band and large numbers of vacant states into which they can move. There
are two common ways in which these requirements can be met.

First, the original atoms may have unpaired outer electrons or partially filled
levels, thereby contributing fewer electrons to the band than there are quantum
states (Figure 23.2(top)). For example, silver has 47 electrons and there is one
unpaired electron in its outermost state (5s1). When N silver atoms are together
in a metal these outermost states split up into a band that can accommodate 2N
electrons, N with spin up, and N with spin down. That is twice as many states
as there are electrons.

Second, there may be overlapping bands (Figure 23.2(bottom)). Even if the
outer electrons could fill one band completely, overlap with the next higher empty
band would guarantee that there will be plenty of vacant neighboring states for
some of these electrons. Overlapping bands are especially prominent in transition
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Figure 23.3 (a) In light
divalent metals, the last
filled band barely
overlaps with the next
higher band. So the Fermi
level is at a minimum in
the density of states.
Fewer available states
mean a lower electrical
conductivitiy. (b) In
transition metals the
s-band is tall, narrow, and
overlaps with the lower
and broader d-band. If the
s-band is only half full,
the density of states at the
Fermi level is very large,
so these metals are
excellent conductors. (c)
When the Fermi level lies
somewhere in the d-band,
the density of states at the
Fermi level is smaller, so
the conductivities are
correspondingly lower.

and heavy metals, where the outer electron states are so closely spaced that even
modest band spreading guarantees overlap. Overlap is also important for divalent
metals, such as magnesium and calcium, as otherwise the two outer electrons
would completely fill the outer band.

B.2 The electrons in the Fermi tail

Conduction electrons in metals are often modeled as a nearly degenerate fermion
gas (subsection 20D.3, section 22C). The conduction band is essentially filled to
the Fermi level and empty above that. Electrons deep within the Fermi sea are
surrounded by filled states. Only those in the “tail” region of the Fermi distribution
have access to nearby empty states (Figure 22.7), which allows them to respond
to external stimuli. Therefore, the density of states near the Fermi level is crucial
in the study of electrical conduction by metals.
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Figure 23.4 Log--log plot
of electrical conductivity
vs. temperature for
platinum and copper, with
temperatures ranging
from 170 K to 1300 K. For
both the slope is close to
−1, so the conductivity
decreases with
temperature roughly as
σ ≈ 1/T.

In some light divalent metals, the last filled band barely overlaps with the next
higher band. Therefore the Fermi level falls near a local minimum in the density
of states (Figure 23.3a). This restricts the number of electrons and vacant states
in the tail and gives these metals relatively lower electrical conductivities.

In the transition metals, the s-bands overlap with the d-bands1. The s-bands
tend to be narrow and dense, whereas the d-bands are broader and have lower
state densities (Figures 23.3b, c). Consequently, for those metals with half-filled
s-bands the Fermi level lies where the density of states is very large (Figure 23.3b).
The electrons in the Fermi tail have access to large numbers of states, which makes
these metals excellent conductors. Examples are copper (half-filled 4s band),
silver (half-filled 5s band), and gold (half-filled 6s band). Metals neighboring
copper, silver, and gold on the periodic table have somewhat lower electrical
conductivities, however, often because the Fermi level lies in the d-band, where
the density of states is smaller (Figure 23.3c).

B.3 Temperature dependence of conductivity

Because the width of the Fermi tail is proportional to the temperature, higher tem-
peratures mean more “free” electrons in this tail region. But the lattice vibrations
also increase with temperature, and they impede the electron flow. The rate of
collision with lattice vibrations increases faster than does the width of the Fermi
tail, so that electrical conductivity in metals actually decreases with increased
temperature (Figure 23.4).

1 The letters identify the orbital angular momentum in the isolated atoms: s means l = 0 and d means

l = 2.
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Figure 23.5 Plot of
occupation number vs.
energy for
semiconductors or
insulators. (Left) At low
temperatures the valence
band is completely full
and the conduction band
completely empty. (Right)
At higher temperatures,
the Fermi tail may reach
across the band gap.
These excitations put
some electrons in the
conduction band and
leave some holes in the
valence band. (We have
exaggerated the width of
the Fermi tail. At room
temperature the width is
about 0.025 eV, a very
small fraction of the band
gap.)

Summary of Sections A and B

As atoms are brought together and their electron clouds overlap, the electron states

become bands of closely spaced states. Higher-lying states generally experience

greater overlap, greater splitting, and wider bands. The last completely filled band in

the T → 0 limit is called the valence band, and the next one above it is called the

conduction band.

For a material to be a good conductor, the conduction band must contain both

large numbers of electrons and large numbers of vacant states into which they can

move in response to external fields. This happens if the atoms have unpaired outer

electrons or partially filled bands or if outer bands overlap. Only electrons in the

Fermi tail have neighboring empty states, so the conductivity depends on the width

of the tail and the density of states near the Fermi surface.

As the temperature rises the width of the tail in the Fermi distribution broadens,

providing increased numbers of mobile electrons. However, collisions with lattice

vibrations increases even faster, so that the electrical conduction in metals normally

decreases with increasing temperature.

C Semiconductors

For semiconductors and insulators, the conduction band is empty in the T → 0
limit (Figure 23.5, Table 23.1). With no mobile charge carriers, the material is an
insulator. But as the temperature increases, excitation of valence electrons across
the band gap becomes increasingly likely.

If the material contains no impurities and no crystalline imperfections, these
two bands are the only states available to the outer electrons. Such perfectly pure
materials are called “intrinsic” semiconductors. If impurities are present, we have
a “doped” semiconductor. Impurities provide states with energies intermediate
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Table 23.1. Size of the band gap in various semiconductors at 0 K
and 300 K (after C. Kittel, Introduction to Solid State Physics, fourth
edition, John Wiley and Sons, 1971)

�εgap (eV) �εgap (eV)

Material 0 K 300 K Material 0 K 300 K

Si 1.17 1.14 PbSe 0.17 0.27
Ge 0.74 0.67 PbTe 0.19 0.30
InSb 0.23 0.18 CdS 2.58 2.42
InAs 0.36 0.35 CdSe 1.84 1.74
InP 1.29 1.35 CdTe 1.61 1.45
GaP 2.32 2.36 ZnO 3.44 3.2
GaAs 1.52 1.43 ZnS 3.91 3.6
GaSb 0.81 0.78 ZnSb 0.56 0.56
SnTe 0.13 0.18

between the two bands. Those impurities that accept electrons from the valence
band are called “acceptors,” and those that donate electrons to the conduction
band are called “donors.” We will examine intrinsic semiconductors first.

C.1 Thermal excitation of the charge carriers

Although a typical material has about 1029 electrons per cubic meter (or 1023/cm3)
in the valence band, only a very small fraction of these would reach the conduction
band. But any that do are surrounded by vacant states. In addition, they leave
behind vacancies, or “holes,” in the valence band (Figure 23.5), which act like
positively charged particles (Figure 10.6). Thus, electrical current in intrinsic
semiconductors is carried both by electrons in the conduction band and by holes
in the valence band, which are created in pairs and are collectively referred to as
“charge carriers.”

C.2 Electrical conductivity and charge carrier mobilities

In Section 16C (Figure 16.3) we learned that a current density is the product of
density times velocity, J = ρv. The density of electrical charge is the product
of the density of charge carriers times the charge of each: ρe = ne. Hence, the
electric current density is

J = ρev = nev, (23.1)
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Table 23.2. Charge carrier mobilities at room temperature for various
semiconductors

Mobility (m2/(V s)) Mobility (m2/(V s))

Material Electrons Holes Material Electrons Holes

diamond 0.18 0.16 CdS 0.034 0.002
Si 0.135 0.048 CdTe 0.03 0.007
Ge 0.39 0.19 PbS 0.055 0.060
GaAs 0.85 0.04 PbSe 0.102 0.093
GaSb 0.40 0.14 PbTe 0.162 0.075
InAs 3.30 0.046 ZnS 0.012 0.0005
InP 0.46 0.015 ZnSe 0.053 0.002
InSb 8.0 0.075

where v is the average drift velocity.2 The electrical current density is proportional
to the applied field, and the constant of proportionality σ is called the “electrical
conductivity:”

J = σE.

Equating these two gives the following expression for the electrical conductivity:

σ = neµ, where µ = |v|/E . (23.2)

The quantity µ is called the “mobility”.3 As its name implies, it measures
how responsive the charge carriers are to an applied electrical field. Because the
charge carriers may include both electrons in the conduction band and holes in
the valence band, we can write

σ = e(n eµe + n hµh). (23.3)

The charge carrier mobility depends on the overlap in electron clouds between
neighboring atoms. Outer orbits have greater overlap and therefore provide greater
ease of movement between atoms. This is one reason why electrons in the con-
duction band generally have greater mobility than do holes in the valence band
(Table 23.2).

2 Don’t confuse the density of charge carriers, n, with occupation number, n. In this chapter we

use the following symbols for densities (number/m3) of charge carriers, atoms, and quantum

states: “n” for charge carrier densities (ne and nh for conduction electrons and valence holes,

respectively) “N ” for impurity densities (Nd and Na for donors and acceptors, respectively)

“N” for densities of quantum states (Nd, Na, Nc and Nv for donor states, acceptor states, con-

duction band edge equivalent states, and valence band edge equivalent states, respectively)
3 Not to be confused with chemical potential or magnetic moment, even though it has the same

symbol.
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Electrical conductivity (equation 23.3) clearly depends on the densities n e and
n h of the charge carriers that are created by excitation of valence electrons across
the band gap and into the conduction band. The probability for such excitations
increases exponentially with the temperature. This exponential increase in charge
carrier density (i.e., in nh and ne) produces a corresponding exponential increase
in electrical conductivity and dominates over the reduction in mobility due to
collisions.

C.3 Band-edge equivalent states

The Fermi level µ lies in the band gap, and the occupation number falls off
rapidly in energy. Therefore, only states very near the edge of the band gap have
any charge carriers in them (Figure 23.5). This encourages us to replace these
states by an appropriate number of “band-edge equivalent states” all having the
same energy and occupation number. Here is how we do it.

Because the valence band is nearly full and the conduction band is nearly
empty, the distance of the Fermi level from either band is large compared with
kT . So we can write the occupation numbers for electron states in the conduction
band and for holes (i.e., electron vacancies) in the valence band as follows:

ne = 1

eβ(ε−µ) + 1
≈ e−β(ε−µ), ε − µ � kT , (23.4a)

nh = 1 − ne = 1 − 1

eβ(ε−µ) + 1
≈ eβ(ε−µ), µ − ε � kT . (23.4b)

(Note that ε − µ is positive for the conduction band and negative for the valence
band.)

For the conduction band we write the total density of electrons as the integral
of the occupation number times the density of states (equation 19.11):

n e =
∫
εc

e−β(ε−µ) g(ε)dε.

We need not worry about the integral’s upper limit because the exponential falls
off quickly and cuts out the higher states. We break the exponential’s argument into
two parts by adding and subtracting εc, which marks the edge of the conduction
band, and then we pull outside the integral the part that does not depend on ε.
First we write

ε − µ = (ε − εc) + (εc − µ),

so that

n e = e−β(εc−µ)

N
c︷ ︸︸ ︷∫

εc

e−β(ε−εc)g(ε)dε ≡ e−β(εc−µ)Nc, (23.5)

Upon identifying Nc we have accomplished our objective. We have replaced a
summation over a large number of states with varying energies and occupation
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numbers by an appropriate densityNc of band-edge equivalent states, all with the
same energy εc and the same occupation number n(εc) ≈ e−β(εc−µ). Likewise, we
can write the density of holes in the valence band as the product of the occupation
number at the top of the valence band times the density of band-edge equivalent
states for holes (homework):

n e = e−β(εc−µ)Nc, n h = eβ(εv−µ)Nv. (23.6)

Notice that the charge carrier density, and hence the electrical conductivity, varies
exponentially in the temperature and the energy gap, εc or v−µ. This exceptional
sensitivity is what makes semiconductors so important in modern electronics.

C.4 Fermi-gas model

The density Nc or Nv of band-edge equivalent states can be determined either
experimentally by measuring the density of charge carriers (n e or n h) or theoret-
ically by using a model for the density of states that would allow us to evaluate
the integral in equation 23.5. For example, we frequently model the electrons as
a Fermi gas, for which the density of states can be found from equation 20.1:

g(ε) = 4π (2m∗)3/2

h3
(ε − εc)

1/2 (23.7)

Notice three modifications.

� Volume V We have divided out the volume from expression 20.1, so that our final

answer for n e or n h will be in units of charge carriers per cubic meter.
� Kinetic energy, ε − εc Electrons with zero drift velocity occupy the lowest states in the

conduction band. Hence, momenta and therefore kinetic energies are measured relative

to the band edge: εkinetic = ε − εc.
� Effective mass, m∗4 The effective mass m∗ can be larger or smaller than the electron’s

actual mass, depending on whether states within the band are denser (more compressed)

or less dense (expanded) compared with those of a free gas. It also reflects the inertia

of the charge carriers. The two are related, because narrower, denser, bands reflect a

smaller overlap of neighboring electron clouds and hence greater difficulty for electrons

to travel from one atom to the next. So electrons (or holes) in narrower, denser, bands

also have greater inertia.

Using the density of states 23.7 the integral in equation 23.5 is easily evaluated,
giving

Nc = 2 (2πm∗kT )3/2

h3
. (23.8)

We get the same answer for holes in the valence band (homework). Because the
value of m∗ is usually near that of the actual electron mass and the temperature

4 Beware! This is just one of many different model-dependent definitions of effective mass that you

might encounter in various fields.
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is usually near 300 K, we can use these numbers in the above equation to get

Nc or v = (2.51 × 1025/m3)

(
m∗

m

T

300 K

)3/2

(23.9)

This is the Fermi-gas-model result for replacing the actual density of states with
the band-edge equivalent density of states. Although there are small variations
due to effective masses and temperatures (as indicated), you can see that this
density of states is typically given by

Nc ≈ Nv ≈ 2.5 × 1025/m3. (23.9′)

You might wonder how this could give the correct carrier density, as it is con-
siderably smaller than the actual density of states in a band, which is typically
around 1029/m3:

band-edge equivalent density of states

actual density of states
≈ 2.5 × 10−4. (23.10)

The reason that the model works is that occupation numbers fall off quickly as
you go into higher energies within a band. Therefore, smaller numbers of states
at the band edge give the same number of charge carriers as larger numbers of
states further into the band.

C.5 Law of mass action

One very interesting consequence of result 23.6 is revealed by multiplying the
densities of the two types of charge carriers (n e and n h) together. We obtain the
“Law of mass action,”

n en h = NcNv e−β(εc−εv ). (23.11)

Notice that for any given band gap εc − εv and temperature T , this product
is a constant. If we increase the conduction electrons (e.g., by adding donor
impurities), there must be a corresponding decrease in valence holes. And if
we increase the valence holes (e.g., by adding acceptor impurities), there must
be a corresponding decrease in conduction electrons. (More foxes mean fewer
rabbits.) The product of the two remains unchanged.

In intrinsic semiconductors, every electron in the conduction band comes from
the valence band, so the number of conduction electrons is equal to the number
of valence holes. Consequently, equation 23.11 is sometimes written as

n en h = n2
intrinsic. (23.12)

If we combine this with equations 23.11 and 23.9′ and take the square root, we
get

n intrinsic ≈ (2.5 × 1025/ m3)e−β(εc−εv )/2. (23.13)



488 Introduction to thermodynamics and statistical mechanics

n-type p-type

conduction band conduction band

donors

acceptors

valence band valence band

gap gap

e e

Figure 23.6 Doped
semiconductors. (Left)
n-type: although there are
far fewer electrons in
donor levels than in the
valence band, the smaller
excitation energy makes
the donors dominate.
(Right) p-type: although
there are far fewer
vacancies in acceptor
levels than in the
conduction band, the
smaller excitation energy
makes the acceptors
dominate. As the
temperature rises,
excitations across the
band gap increase and
eventually dominate
those from impurity
levels. The semiconductor
then becomes effectively
intrinsic.

C.6 Doped semiconductors

A typical donor or acceptor impurity has one more or one less outer electron than
is needed to bind to the neighboring atoms in its lattice position, so readily donates
or accepts an extra electron. For example, it might come from the column in the
periodic table that is either to the right or to the left of the parent semiconductor
material. Each donor state lies typically only a few hundredths of an eV below the
conduction band, reflecting the rather small amount of thermal energy required to
shake a surplus electron loose. Likewise, acceptor states lie only a few hundredths
of an eV above the valence band, reflecting the relative ease of exciting a valence
electron into one of these levels. Each electron that moves into a vacant acceptor
level leaves behind a vacancy at its former residence. So we think of acceptors as
exchanging holes with the valence band in the same way that donors exchange
electrons with the conduction band.

Because probabilities fall exponentially in energy, excitation of electrons to or
from these intermediate impurity levels is much more probable than excitation all
the way across the band gap (Figure 23.6). Consequently, a small concentration of
impurities may have a large effect. A material is “n-type” or “p-type” depending
on whether the electrical properties are dominated by negatively charged electrons
from donors or positively charged holes from acceptors.

Normally, each impurity atom can give or take one electron, but that electron
could be in either of two states, spin up or spin down. Therefore, the density
of impurity states (Nd or Na) is twice the density of the corresponding impurity
atoms (N d or N a) and also twice the density of the electrons they may donate or
accept:

donor atom density = N d = N d/2,
(23.14)

acceptor atom density = N a = N a/2.

The same reasoning that applies to these impurity states also applies to the con-
duction and valence bands. Any electron that jumps out of the valence band or
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into the conduction band can be in either of two states: spin up or spin down. But
our use of band-edge equivalent states means that Nc and Nv are reduced from
the true density of states by a factor of about 2.5 × 10−4 (equation 23.10). So
the conversion from the density of band edge equivalent states to the density of
atoms in the host material would be

Nc/2 = Nv/2 ≈ 2.5 × 10−4 Natoms. (23.14′)

C.7 The Fermi level

For intrinsic semiconductors, each electron that reaches the conduction band
leaves a hole in the valence band. This means that the Fermi level (≈ µ) lies very
near the center of the band gap (Figure 23.5), as can be seen by equating n e and
n h in equations 23.6 and solving for µ:

µ = εc + εv

2
+ kT

2
ln

(
Nv

Nc

)
(intrinsic) (23.15)

The term on the right is very small, typically less than 0.01 eV (homework).
In doped materials, however, impurities cause the Fermi level to move. It lies

closer to the conduction band in n-type materials because there are more con-
duction electrons than valence holes (n e > n h), and closer to the valence band in
p-type materials because there are more valence holes than conduction electrons
(n h > n e). We can calculate its position if we know the dopant concentration,
as we now illustrate for n-type materials (Figure 23.7). (The analysis for p-type
materials would be the same, except that we consider the exchange of holes
between acceptors and the valence band rather than electrons between donors
and the conduction band.) The results are summarized in Table 23.3.

At absolute zero, there are no excitations at all. All Nd/2 donor electrons5

remain on the donor atoms. Since half the Nd donor states are occupied5, n(εd ) =
1/2 and so the Fermi level lies precisely on the donor level:

µT =0 = εd (n-type). (23.16)

As the temperature rises, however, excitations become possible. Although the
probability of excitation from a donor level to any one state in the conduction
band may be small, the conduction band has a huge number of such states into
which it may go. The sum of many small probabilities is large, so at normal
temperatures, nearly all the Nd/2 donor electrons are in the conduction band.
Equating this number to that given by equation 23.5, we have

N d = Nd

2
≈ n e = Nce−β(εc−µ).

Solving for µ gives

5 Remember, the donor electron could be either spin up or spin down, so there are twice as many

states as electrons. When the energy of the state is equal to µ , the occupation number is n =
1/(e0 + 1) = 1/2.



490 Introduction to thermodynamics and statistical mechanics

low temperature high temperature

valence band
is full

a few conduction
electrons

n (e) n (e)
1

0

1

0

valence band valence bandband gap band gap

(intrinsic)

conduction bandconduction band

e eev

ec

ev

evm ed ec  ed ec

excitations leave holes
in valence band

more conduction
electrons

lower
Fermi
level

m

conduction band

(a) (b)

1.0

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2

0.1

0
valence band

donor levels

0 100 200 300 400 500 600 700 800

(c)

m 
(e

V
 a

bo
ve

 v
al

en
ce

 b
an

d)

Figure 23.7 The position of the Fermi level µ for an n-type semiconductor. (a) At
normal temperatures it lies below the donor levels but above the middle of the band
gap. All conduction electrons come from donor levels, leaving most donor levels
empty. (b) As temperature increases, the Fermi tail broadens and the Fermi level
moves downward toward the middle of the band gap. Excitations across the gap
increase, eventually dominating as the material becomes intrinsic. (c) Plot of the
position of the Fermi level as a function of the temperature for a typical n-type
semiconductor with donor levels 0.04 eV below the conduction band, a band gap of
1.0 eV, and with Nd = Nd/2 = 2.5 × 1021/m3 (roughly 0.025 ppm).

µ ≈ εc − kT ln

(
2Nc

Nd

)
(n-type). (23.17)

This shows that the Fermi level moves downward as the temperature increases
(Figure 23.7). Both the broadening of the tail and the movement of µ downward
increase the number of holes in the valence band. We should expect this, of
course, because as temperature increases, excitations across the band gap become
increasingly likely.
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Table 23.3. Position of the Fermi level (≈µ) as a function of the temperature and densities of states for
intrinsic, n-type, and p-type semiconductors (εc, conduction band edge; εv, valence band edge; εd, donor
level; εa, acceptor level; Nc, density of conduction band-edge equivalent states; Nv , density of valence
band-edge equivalent states; Nd , density of donor states; Na, density of acceptor states)

intrinsic µ(all temperatures) = εc + εv

2
+ kT ln

(
Nv

Nc

)
≈ εc + εv

2
(midgap)

doped:

µ(T = 0) µ(normal temperatures) temperature of transition to intrinsic

n-type εd εc − kT ln

(
2Nc

Nd

)
T ≈ εc − εv

2k ln
(
2Nc/Na

)
p-type εa εv + kT ln

(
2N

ν

Na

)
T ≈ εc − εv

2k ln
(
2Nv/Na

)
Conversion of dopant concentrations from density of states to density of atoms:

Nd

Natoms
≈ 2.5 × 10−4 Nd

Nc

,
Na

N atoms
≈ 2.5 × 10−4 Na

Nv

C.8 Transition to intrinsic behavior

Because excitations across the band gap require much more energy than exci-
tations to or from impurity levels, a band gap excitation is much less probable.
However, there are far more electrons in the valence band than in donor levels
(Figure 23.6). So although the probability for any particular band gap excitation
is smaller, there are many more possibilities, and the sum of many small prob-
abilities may be large. As the temperature rises, the probability for excitations
from the valence to the conduction band increases exponentially and eventually
dominates over excitations from impurity levels. The material becomes intrinsic.

The temperature for this transition from doped to intrinsic behavior can be
estimated by finding the temperature at which the number of excitations from the
impurity levels equals that from excitations across the band gap (Figure 23.8).
Using the law of mass action 23.11 for the intrinsic excitations, we can write this
criterion as

(n donor excitations)
2 = (n intrinsic excitations)

2 ⇒
(

Nd

2

)2

= Nv Nce−β(εc−εv ).

Solving for T , assuming that Nv ≈ Nc, gives (homework):

Tintrinsic ≈ εc − εv

k ln
(

4Nv Nc/N2
d

) −→ εc − εv

2k ln
(
2Nc/Nd

) (n-type). (23.18)

This result confirms that the transition temperature is higher if the valence elec-
trons have a larger gap to overcome or if they have a larger number of donor states
with which to compete.
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Figure 23.8 (a) The
density of conduction
electrons as a function of
temperature for an n-type
semiconductor, indicating
those electrons coming
from donor levels (using
Nd = Nd/2 = 2.5×
1020/m3) and those from
excitation across the band
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and 2 eV. (b) The
temperature for transition
to intrinsic vs. donor level
concentration Nd/Nc for
band gaps of 1 eV and 2
eV. (Nd/Nc is very roughly
4000 times the dopant
concentration by number
of atoms.)

Example 22.1 What is the minimum donor concentration needed to keep a
semiconductor n-type up to 600 K, if the band gap is 1 eV?

Putting εc − εv = 1.00 eV and T = 600 K into equation 23.18 yields

600 K = 1.00 eV

2k ln
(
2Nc/Nd

) .
Solving for Nd/2 gives

Nd

2
= 6.3 × 10−5Nc,

where (equation 23.9)

Nc ≈ (2.5 × 1025/ m3)

(
600 K

300 K

)3/2

= 7.1 × 1025/m3.

So the impurity concentration is around 4.5 × 1021/m3. (In terms of relative
number of atoms this is around 0.05 ppm.)

Summary of Sections C and D

For semiconductors and insulators, the filled valence band is separated from the

empty conduction band by a band gap. At low temperatures, there is insufficient

thermal energy for electrons to jump this gap, but as the temperature increases, these

transitions become increasingly likely. Therefore, whether these materials are

semiconductors or insulators depends on the size of the gap and the temperature.

When an electron leaves the valence band it leaves behind a positively charged

hole. Both electrons in the conduction band and holes in the valence band are

referred to as charge carriers. The mobility µ of the charge carriers measures how

well they move in response to external fields. The outer, higher-energy, orbits

generally have greater overlap, providing the electrons with greater ease of

movement. Collisions with lattice vibrations increase with increasing temperature.

The electrical conductivity of a material depends both on the density of charge
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carriers and their mobilities (equations 23.2, 23.3):

σ = e(n eµe + n hµh), where µ = |v|/E .

We can replace the states in a band with a reduced number of band edge

equivalent states, all having the same energy and the same occupation number. For

example, we can write the density of electrons in the conduction band as

(equation 23.5)

n e =
∫
εc

e−β(ε−µ) g(ε)dε = e−β(εc−µ)

∫
εc

e−β(ε−εc ) g(ε)dε

= e−β(εc−µ)Nc.

The same procedure for holes in the valence band gives a corresponding result, so

for electrons and holes we have (equation 23.6)

n e = e−β(εc−µ)Nc nh = eβ(εv −µ)Nv

The density Nc or Nv of band-edge equivalent states can be determined either

experimentally by measuring the density of charge carriers (n e or n h), or

theoretically by using a model for the density of states. Using the Fermi gas model

gives (equation 23.9)

Nc or v = (2.51 × 1025/ m3)

(
m∗

m

T

300 K

)3/2

,

where the effective mass m∗ reflects the density of states within a band and also the

effective inertia of the charge carriers.

If we multiply the density of electrons in the conduction band by the density of

holes in the valence band we get the law of mass action (equations 23.11, 23.12):

n en h = NcNv e−β(εc−εv ) or n en h = n2
intrinsic.

At any given temperature, the product of the two types of charge carrier is constant.

Donor states lie close to the conduction band, reflecting the small energy

required to excite the loosely held electrons into the conduction band. Acceptor

states lie close to the valence band, reflecting the small energy required to excite

valence electrons into these states. Each impurity atom can donate or accept

electrons in either spin-up or spin-down states. Therefore, there are twice as many

impurity states as there are impurity atoms (equation 23.14):

density of donor atoms = N d = Nd/2,

density of acceptor atoms = N a = Na/2.

Because of the smaller energies involved, there is a much higher probability for

any given electron to be excited to or from these intermediate states than to jump the

entire band gap. However, there are far more electrons in the valence band than in

the donor states, and far more empty states in the conduction band than in acceptor

states. So as the temperature increases and transitions across the band gap become
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increasingly probable, the band gap transitions eventually dominate. The material

becomes intrinsic.

Under normal conditions in n-type materials, most donor atoms have given up

their electron to the conduction band, and the Fermi level lies somewhat below them.

As the temperature rises, transitions across the band gap become increasingly

probable. The tail in the Fermi distribution broadens and the Fermi level moves

downward towards the center of the band gap. The corresponding pattern is

followed in p-type materials. Formulas for the location of the Fermi level in both

intrinsic and doped materials and the temperature at which a doped semiconductor

becomes intrinsic are listed in Table 23.3.

D p--n junctions

D.1 Diffusion across the junction

We learned in Chapters 9 and 14 that particles diffuse towards regions of lower
chemical potential and that the chemical potential depends on (a) the potential
energy and (b) the particle density.

An increase in one of these can be offset by a sufficient decrease in the other.
When diffusive equilibrium is reached the chemical potentials in the regions are
equal. The region of higher potential energy has the lower particle density.

Doped semiconductors that are p-type have few if any electrons in the con-
duction band, and n-type materials have few if any holes in the valence band.
Therefore, when they are brought together to form a “p–n junction,” conduction
electrons from the n-side diffuse across to the p-side, where conduction electrons
are scarce. Likewise, valence holes from the p-side diffuse to the n-side where
holes are scarce (Figure 23.9a).

The diffusion of charged particles between the two sides creates a buildup of
negative charge on the p-side of the junction and positive charge on the n-side
(Figure 23.9b). This causes a corresponding shift in the potential energies of
the charge carriers on the two sides. When this potential barrier becomes large
enough, it will oppose further diffusion. That is, when the increase in potential
energy offsets the decrease in particle concentrations, the chemical potentials in
the two regions are equal. At this point, diffusive equilibrium is reached, and
there is no more net diffusion.

In equilibrium, then, there is a skewed charge distribution across a p-n junc-
tion, causing the energy of conduction electrons to increase as they enter the
p-side, and the energy of the valence holes to increase as they enter the n-side.
In both cases the increase in potential energy is offset by a decrease in particle
concentration.

D.2 Drift and diffusion currents

We now examine the behavior of the electrons and holes near a p-n junction.
The electrons diffuse in the opposite direction to the holes and carry the opposite
electrical charge. Therefore, the directions of the resulting electrical currents are
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Figure 23.9 (a) When
p-type and n-type
materials are first brought
together, charge carriers
of each type diffuse from
where there are many of
that type to where there
are few: conduction
electrons diffuse towards
the p-side and valence
holes (encircled plus
signs) towards the n-side.
(b) The resulting
separation of electrical
charge creates a shift in
potential energies across
the junction. The diffusion
continues until this shift is
sufficient for the chemical
potential (colloquially, the
Fermi level) on both sides
to be the same. (c) The
shift in potential energies
due to this charge
separation is similar to
that for electrons across a
charged capacitor.
Electron energies
increase upwards, so hole
energies increase
downwards.

the same. The diffusion of electrons toward the p-side and holes toward the n-side
is referred to as the “diffusion current.” It is countered by an opposing current,
called the “drift current,” which is due to the charge carriers flowing “downhill”
towards the region of lower electrical potential energy.6 In diffusive equilibrium,
the drift and diffusion current densities are equal and opposite and so the net flow
is zero (Figure 23.10a):

jnet = jdiffusion − jdrift = 0 (in equilibrium).

All electrons approaching the junction from the p-side continue on, because they
are going “downhill.” The same is true for the holes approaching from the n-
side. The tendency to flow downhill is independent of the height of the hill so the
resulting drift current is constant (at any given temperature):

jdrift = j0 = constant.

6 Beware! Holes have the opposite electrical charge to electrons, so on electron energy diagrams the

potential energy of holes increases in the downward direction.
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Figure 23.10 The movement of electrons (or holes) across a p--n junction can be
separated into two components. The ‘‘drift”current is constant and results simply
from the tendency of the charge carriers to flow downhill to lower potential
energies. The ‘‘diffusion current”results from the opposing tendency to flow to
regions of lower concentration, albeit higher potential energy, and varies
exponentially with the height of the potential barrier. (b) With a ‘‘reverse bias”the
potential barrier is increased and the diffusion current goes exponentially to zero. (c)
With a ‘‘forward bias”the barrier is decreased and the diffusion current increases
exponentially. (Caution: Because of the negative charge of electrons, the current
direction is opposite to the direction of electron flow.)

The situation is quite different for the diffusion current. There is a huge number
of conduction electrons on the n-side of the junction and a huge number of holes
on the p-side. But as they approach the junction they have a potential energy
barrier to overcome. Because the occupation number decreases exponentially
with energy, the fraction of electrons or holes that can overcome the barrier
decreases exponentially with its height,

jdiffusion ∝ e−βεbarrier .

We now combine these expressions for the drift and diffusion currents and impose
the constraint that when in diffusive equilibrium the two currents are equal and
opposite. The result for the net current across the junction is

jnet = jdiffusion − jdrift = j0 (e−β�ε − 1), (23.19)

where �ε represents any change in the height of the barrier from its equilibrium
value.
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Figure 23.11 Current vs.
voltage across a p--n
junction, showing the
exponential variation in
the diffusion current.

D.3 Applied voltage

The important feature of the result 23.19 is that the diffusion current changes
exponentially with changes in the height of the energy barrier, whereas the drift
current is constant (Figure 23.11). Because kT is only a few hundredths of an
electron volt, a very small change in the height of the barrier causes a huge change
in the diffusion current.

In a “forward bias,” we connect the negative terminal to the n-side and the
positive terminal to the p-side. The reversed situation is called a “reverse bias.”
With a forward bias of U volts, the height of the barrier is reduced by eU for both
the electrons and holes:

�ε = −eU .

Putting this barrier height into equation 23.19, we have

jnet = j0 (eβeU − 1). (23.20)

Notice that the diffusion current increases exponentially in the applied voltage
and dominates the drift current going the other direction.

jnet ≈ j0eβeU (forward bias, eU � kT ). (23.21)

For a reverse bias (negative U ), the diffusion current goes equally quickly to zero,
and the net current is dominated by the relatively small drift current in the reverse
direction:

jnet ≈ − j0 (reverse bias). (23.22)

This behavior is illustrated in Figure 23.11. This very important property of the
p-n junction makes it useful in a wide variety of electronic devices.



498 Introduction to thermodynamics and statistical mechanics

Summary of Section D

When p-type and n-type semiconductors are joined, conduction electrons and

valence holes diffuse across the junction until equilibrium is attained. This causes a

skewed charge distribution across the junction, making the potential energy of

electrons higher on the p-side and that of holes higher on the n-side.

Compared with the holes, conduction electrons diffuse in the opposite direction

and carry the opposite electrical charge. Consequently, the directions of the

corresponding electrical currents for both types of charge carriers are the same.

Electrons approaching the junction from the p-side and holes approaching from

the n-side are flowing “downhill” in a drift current. This current is constant, because

the tendency to flow downhill is independent of the size of the “hill.” However,

electrons and holes approaching the junction from the other direction (the diffusion

current) encounter a potential barrier. Their probability of surmounting this barrier

depends exponentially on the height of the barrier. When in equilibrium, these two

currents are equal and opposite, so there is no net current across the junction. But

we can change the height of the barrier and drastically alter the diffusion current by

applying a voltage across the junction. If we apply a bias of U volts, then the net

current across the junction is given by (equation 23.20)

jnet = jdiffusion − jdrift = j0 (eβeU − 1),

where j0 is the drift current.

With a forward bias, the diffusion current increases exponentially in the applied

voltage and dominates the drift current. And with a reverse bias the diffusion current

goes to zero, which leaves only the relatively small drift current in the reverse

direction (equations 23.21, 23.22):

jnet ≈ j0eβeU (forward bias, eU � kT ),

jnet ≈ − j0 (reverse bias).

Problems

Sections A and B
1. (a) Why can outer electrons migrate between neighboring atoms more easily

than the inner electrons?
(b) Why are the outer bands generally wider than the inner bands?

2. Suppose that we model the temperature dependence of electrical conductivity
in metals by σ = CTα, where C and α are constants. From Figure 23.4,
estimate the values of C and α for platinum and copper.

3. Suppose that Figure 23.2a is a sketch of the band structure for aluminum.
Sketch the corresponding figure for silicon. Aluminum has 13 electrons, with
one in the outermost level, and silicon has 14 electrons.
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4. Comparing Figure 23.3a and 23.3b, why do you suppose transition metals
such as copper are generally better electrical conductors than divalent metals,
such as calcium?

Section C
(Assume m = m∗ unless otherwise indicated. But don’t forget that Nc and Nv

depend on T .)

5. The density of conduction electrons in most metals is about 1029/m3.
(a) With this, equation 23.2, and the conductivities from Figure 23.4, esti-

mate the average mobility of the conduction electrons in copper and
platinum at room temperature.

(b) Comparing these with those for semiconductors given in Table 23.2, why
do you suppose the average electron mobilities in conductors are so much
lower?

6. Show that: (a) equations 23.4a, b are true for |ε − µ| � kT ; (b) equation 23.7
follows from 20.1. (c) Starting with equations 23.5 and 23.7 derive expres-
sions 23.8 and 23.9 for the number density of electrons in the conduction
band. Do the same for holes in the valence band.

7. The density of silicon is 2.42 × 103 kg/m3 and that of germanium is 5.46 ×
103 kg/m3. Their respective atomic masses are 28.1 and 72.6. Estimate the
actual number of states (states/m3) in the conduction band for each. Assume
that state degeneracies make g(ε) four times denser than in equation 23.7.
There we assumed two electron states (spin up and spin down) per atom.
How do these numbers compare with the number of band-edge equivalent
states? Take T ≈ 300 K.

8. Suppose that the Fermi level is 0.50 eV below the conduction band in a
certain semiconductor. Estimate the density of conduction electrons in the
conduction band for temperatures of 50 K, 200 K, and 600 K.

9. (a) Starting with equations 23.6, derive equation 23.15 for the location of µ

in an intrinsic material. What conditions are needed?
(b) Consider an intrinsic semiconductor at 300 K whose valence holes have

twice the effective mass of the conduction electrons. How far above the
midpoint of the band gap would the Fermi level lie?

10. Consider excitations from level εi = −4 eV with 1025 states/m3 to level ε j =
−2.5 eV with 1024 states/m3 in a semiconductor at 295 K. (Treat the states
as band-edge equivalent states if you wish.)
(a) How many excitations are there per cubic meter?
(b) What is the energy of the Fermi level?
(c) Repeat for the same case except that level i now has 1026 states/m3 and

the temperature is 500 K.
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11. Estimate the density of charge carriers for an intrinsic semiconductor with
gap and temperature as follows: (a) 1.0 eV, 290 K, (b) 2.0 eV, 290 K, (3) 1.0
eV, 580 K.

12. Consider an intrinsic semiconductor at 290 K with �εgap = 1.1 eV.
(a) How far above or below the center of the band gap will the Fermi surface

be if m∗
v/m∗

c = 2.1?
(b) Repeat for temperature 700 K.

13. Consider a semiconductor at 295 K with �εgap = 1.1 eV. It is intrinsic, so
that excitations involve the valence and conduction bands only.
(a) Roughly what is the density of electrons in the conduction band?
(b) If we add an impurity that increases the density of electrons (the number

per cubic meter) in the conduction band tenfold, what will be the density
of holes in the valence band?

14. Using room-temperature values for the band gap and carrier mobilities from
Tables 23.1 and 23.2, estimate the electrical conductivities of the following
intrinsic semiconductors (a) germanium at 290 K, (b) silicon at 290 K, (c)
silicon at 670 K.

15. Consider each of the following intrinsic semiconductors at 300 K: Si, Ge,
GaAs, InSb.
(a) From the band gaps of Table 23.1, estimate the density of conduction

electrons and valence holes.
(b) Combine these results with the mobilities in Table 23.2 to estimate their

electrical conductivities.

16. For an intrinsic semiconductor with a band gap of 2.0 eV, estimate the tem-
perature at which there would be only one conduction electron per cubic
meter of material.

17. The electrical conductivity of an intrinsic semiconductor at 295 K is 1.0 ×
10−3 A/(V m). If its charge carrier mobilities are µe = 0.15 m2/(V s) and
µh = 0.09 m2/(V s), roughly what is the band gap?

18. Consider an intrinsic material having a band gap of 2.5 eV. At what temper-
ature would the density of conduction electrons be (a) 1/m3, (b) 10 000/m3.
(c) What percentage change in temperature causes this 10 000-fold increase
in electrical conductivity?

19. Consider an intrinsic material with a band gap of 1.2 eV at 300 K. By how
many degrees must its temperature be increased if the electrical conductivity
is to be doubled?

20. Consider an intrinsic material at 300 K. Under pressure, the band gap is
reduced from 1.6 to 1.5 eV. By what factor does the electrical conductivity
of this material increase?
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21. Suppose you wish an intrinsic material to remain an electrical insulator at 800
K, having less than one conduction electron per cubic centimeter of material.
What is the minimum band gap that is needed?

22. Consider an n-type semiconductor with a band gap of 0.8 eV, and with 1021

dopant atoms per m3, giving 2 × 1021 donor levels per m3, which are 0.04
eV below the conduction band.
(a) At absolute zero, is the Fermi level above, below, or at the donor

levels?
(b) At what temperature is the Fermi level 0.08 eV below the donor level?
(c) At 300 K, how many conduction electrons come from donor levels? From

the valence band?
(d) Above what temperature will this semiconductor become intrinsic?

23. Consider an n-type semiconductor at 300 K with a band gap of 1.1 eV, donor
levels lying 0.03 eV below the conduction band, and Nd = 2.51 × 1021/m3.
(a) How far below the conduction band is the Fermi level?
(b) Roughly what is the density of conduction electrons?
(c) Roughly what is the density of holes in the valence band?
(d) Repeat parts (a), (b), and (c) for a temperature of 500 K.
(e) Roughly what is the temperature above which it becomes intrinsic?

24. Repeat the above problem for Nd = 2.51 × 1019/m3.

25. Consider a p-type semiconductor at 300 K with band gap of 0.8 eV, acceptor
levels lying 0.04 eV above the valence band, and Na = 2.51 × 1021/m3.
(a) How far above the valence band is the Fermi level?
(b) Roughly what is the density of valence holes?
(c) Roughly what is the density of electrons in the conduction band?
(d) Repeat parts (a), (b), and (c) for a temperature of 500 K.
(e) Roughly what is the temperature above which it becomes intrinsic?

26. Consider an n-type material at 300 K with donor levels 0.02 eV below the
conduction band. The number of holes in the valence band is 1013/m3, and
that of electrons in the conduction band is 1021/m3. What is (a) the band gap,
(b) the value of Nd , (c) the distance of µ below the conduction band?

27. Consider a p-type semiconductor at 300 K with n h = 1022/m3 and Na/Nv =
10−6.
(a) What is the band gap?
(b) How far above the valence band is the Fermi level?
(c) At what temperature does the semiconductor turn intrinsic?

28. A certain p-type semiconductor has a band gap of 0.8 eV, the acceptor
levels being 0.03 eV above the valence band. What is the minimum den-
sity of acceptor atoms (in number per cubic meter) that would ensure that
the semiconductor remains p-type up to a temperature of 400 K?
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29. A certain semiconductor has 1021 donor atoms per m3, and the donor levels
are 0.03 eV below the conduction band. There are 1016 conduction electrons
per m3. What is the temperature?

Section D
30. The band displacement across a certain p-n junction is 0.4 eV. The tem-

perature is 300 K and the density of conduction electrons on the n-side is
1022/m3.
(a) Show that the ratio of the densities of conduction electrons on the p-side

and on the n-side is ne,p/ne,n = e−β�εc , where �εc is the displacement
of the band across the junction.

(b) What is the density of conduction electrons on the p-side?
(c) How far below the conduction band edge does the Fermi level lie on the

n-side? On the p-side?

31. Consider a p-n junction at 290 K with �εgap = 1.1 eV. The Fermi level lies
0.2 eV from the valence and conduction band edges on the p- and n-sides,
respectively.
(a) What is the band displacement, �εc or �εv, across the junction?
(b) What are the charge carrier densities, n h and n e, on the p-side?
(c) What are the charge carrier densities on the n-side?
(d) What are the answers to part (b) at a temperature of 320 K?

32. The drift current can be estimated from the density of charge carriers and
their average thermal speeds.
(a) Why is it that only the charge density of electrons on the p-side and that

of holes on the n-side need be considered?
(b) Show that the drift current due to either charge carrier is given by jdrift =

env/4, where n is the density of the appropriate charge carrier and v is
its average thermal speed. (Hint: At any instant, what fraction of the n
charge carriers per m3 are moving toward the junction and what is the
average component of their speed in that particular direction?)

(c) What is v as a function of m∗and T ? (See Chapter 16.)

33. In the above problem, we found that the drift current due to either charge
carrier can be approximated by jdrift = env/4, where n is the density of the
conduction electrons on the p-side, or of the holes on the n-side. We are now
going to apply this to a typical p-n junction in a semiconductor at 300 K with
a band gap of 1.1 eV and a band displacement across the junction of 0.6 eV.
The Fermi level lies 0.25 eV below the conduction band on the n-side.
(a) What is the density of conduction electrons on the p-side of the junction?
(b) What is the density of valence holes on the n-side of the junction?
(c) What is the average thermal speed of a conduction electron or hole (use

m∗ = m for both)?
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(d) From this information, estimate the drift current density, jdrift, across the
junction.

34. Consider a p--n junction at 295 K with a drift current density of 6 ×
10−4 A/m2. What is the current density through this junction when we apply
(a) a reverse bias of 0.01 volts? Of 0.2 volts?
(b) a forward bias of 0.01 volts? Of 0.2 volts?
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In this chapter we return to the study of systems that are nearly degenerate. As
illustrated in Figure 24.1, a degenerate system of N identical fermions fills the
N lowest quantum states, one particle per state. For degenerate bosons, all are in
the one single state of lowest energy.1

A degenerate system is confined to a small volume in phase space because of
either:
� restricted volume in momentum space owing to small masses, or low temperatures,2 or
� Restricted volume in coordinate space owing to high densities.

Important examples of each case will be studied in this chapter.

1 A fermionic substructure may restrict the overlap between bosons in position space. The consequent

larger volume in position space would then be offset by a correspondingly smaller volume in

momentum space.
2 Remember that the classical equipartition theorem (p2/2m = 3/2kT ) predicts a root mean square

momentum of prms = (3mkT )(1/2. So volume in momentum space depends on both mass and

temperature.
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fermions

cold hot cold hot

bosons

Figure 24.1 At high
temperatures, particles
are surrounded by vacant
states, which gives them
a great deal of freedom,
and so the system’s
properties vary smoothly.
At low temperatures,
however, they have no
vacant neighboring
states. The only possible
transitions are upward
and often require an
energy that is large
compared with kT.
Changes in physical
properties may then be
discrete rather than
smooth.

The measures of high densities, small masses, and low temperatures are on a
relative scale and are interdependent. At earthly densities, many systems become
degenerate only if temperatures descend to a few kelvins or lower. Yet these same
systems may be degenerate at several million kelvins when squashed together
in extremely dense collapsed stars. The conduction electrons in metals have the
same density and temperature as the atoms. Yet because of the difference in their
masses, the electrons are degenerate and the atoms are not.

At high temperatures and/or low densities, the particles of a system are sur-
rounded by vacant quantum states into which they can move (Figure 24.1). This
freedom enables them to give rather smooth and continuous responses to vary-
ing environmental conditions. But in degenerate systems, quantum effects are
more visible. Imprisoned particles are unable to move into neighboring states,
which makes the system unresponsive to external stimuli. Excitations from the
ground state may require discrete jumps in energy, and this may produce some
very interesting properties.

A large number of important systems are degenerate or nearly degenerate in
our normal earthly conditions, where either high densities (such as those of con-
duction electrons in metals or nucleons in a nucleus) or high excitation energies
(such as those of electrons in inner atomic orbits or the vibrational excitations of
some molecules) confine them to the lowest-energy arrangements. However, in
this chapter we examine important systems that are not degenerate in our every-
day environment but which become degenerate under more severe conditions.
When degenerate, they display properties that are quite different from those with
which we are familiar, so they intrigue us.

A Low temperatures

The properties of systems depend on the ratio ε/kT , where ε is a state’s energy
and T the temperature. Because this ratio varies by the same factor either way, we
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might expect systems to display as large a range of interesting properties between
10−9 and 1 K as between 1 and 10+9 K. We begin this chapter by looking at the
low-temperature regime.

How do we cool things below their earthly temperatures? Heat transfer (i.e.,
thermal interactions) can work for moderate cooling. Lemonade can be cooled by
ice cubes, for example. Dry ice (195 K) may provide even cooler temperatures.
But if we wish to make an object colder than anything in its environment then we
must insulate it, because any heat transfer would be in the wrong direction. For
this reason, cooling to very low temperatures must be done adiabatically (i.e., in
a thermally isolated way), using either diffusive or mechanical interactions.3 We
now examine a few of the ways currently used to produce and measure extremely
low temperatures.

A.1 Mechanical cooling through expansion

We are familiar with the adiabatic cooling of a gas through expansion. Rising air
expands and cools, causing clouds and rainfall. By opening the valve on a tank
of compressed CO2, the escaping gas may cool to the point where dry ice snow
is formed.

In the throttling process of subsection 12E.1, a gas expands as it passes
through a constriction or resistive barrier. Cooling in this way depends on attrac-
tive interatomic forces and negative potential energies. Larger distances between
molecules usually results in increased potential energy -- hence decreased thermal
energy. The throttling process may be repeated or done in stages (Figure 24.2).
For example, throttled air does not cool from room temperature to the point where
liquid nitrogen condenses (77 K) unless the process is repeated many times. The
cooled air from one cycle is used to pre-cool the incoming air for the next cycle.
Liquid nitrogen can then be used as the starting point for the throttling of hydro-
gen, and then liquid hydrogen for the throttling of helium.

Instead of expanding against itself as in throttling, a gas may also expand
against a piston. This process cools the gas more efficiently, because the work
is done on the receding piston rather than on the gas itself. That is, the internal
energy of the gas is reduced by transfer to a different system (the piston) via the
mechanical interaction. Challenges involve materials and machining. The large
pressure changes require strong materials. Yet these must also have low heat
capacities and thermal conductivities, so that they don’t reheat the cooled gases.
And the machining must be precise to reduce losses to leakage. Because of the
inefficiency of throttling cycles, expansion against a piston is often preferred in
spite of the higher equipment cost. Now much of our liquid helium is produced

3 Remember, constant entropy means that the total six-dimensional volume in phase space (Vr Vp) is

constant. For quasistatic adiabatic expansion or diffusion, the increased volume in coordinate space

produces a corresponding reduction in volume in momentum space (hence, lower temperature).
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Figure 24.2 Adiabatic
cooling through
mechanical and diffusive
interactions. (Left)
Cooling and liquefying
gases via expansion.
(Right) The helium
dilution refrigerator uses
the evaporation of 3He
into 4He, which cools in
the same way that water
evaporating from your
skin cools you after you
step out of a shower.
Evaporation into 4He
presents a smaller
potential barrier than
evaporation into the
vacuum, and so it can
continue to much lower
temperatures.

this way. With a boiling point of 4.22 K at atmospheric pressure, liquid helium
serves as the starting point for research at temperatures of a few kelvins and
lower.

A.2 Diffusive cooling and helium dilution

Diffusive cooling is experienced whenever we step out of a shower. As moisture on
our skin evaporates, the faster molecules leave and the slower, “cooler,” molecules
remain. The same happens with other liquids. If we put liquid nitrogen or helium
into a partial vacuum, the evaporation of faster-moving molecules makes the
remaining liquid cooler.

Unfortunately, there is a limit to the lowest temperature attainable by pumping a
vacuum on liquid helium. The weak attraction between the helium atoms, which
causes it to condense at very low temperatures, also puts the atoms of liquid
helium into a shallow potential well. At temperatures below about 1 K, there
is insufficient thermal energy for the helium atoms to surmount this potential
barrier and the evaporation stops. More precisely, it falls to such a low rate
that evaporative cooling no longer successfully competes with heat entering the
system from other sources.

There is some improvement with the 3He isotope. By pumping a vacuum on
liquid 3He, we can reach temperatures around 0.3 K before the vapor pressure
goes to zero. And if we replace the vacuum by liquid 4He, we can go still lower.
This process is called “helium dilution refrigeration,” and it works as follows
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(Figure 24.2). Instead of evaporating into a vacuum, the 3He evaporates into
liquid 4He, which provides a considerably smaller potential barrier. In fact, as
long as we keep the concentration of 3He in the 4He solution below about 8%,
its chemical potential there is lower. The decrease in concentration more than
offsets the increase in potential energy, so the evaporative cooling continues
indefinitely. Although other processes can lower the temperature further, one
important advantage of the helium dilution refrigerator is that it can maintain
temperatures in the range of millikelvins for extended periods. It can also serve
as a starting point for other processes, as follows.

A.3 Adiabatic demagnetization

Suppose that we have used the above techniques to cool our sample to a few
millikelvins, and we wish to cool it still further. One way to do this involves
magnetic fields. At low temperatures, considerably more entropy is available
in the spin orientations of paramagnetic materials than in the thermal motions
of atoms, which decrease as T 4 (equation 22.13). At 0.1 K, for example, the
number of spin states in a typical solid is about 108 times larger than the number
of vibrational degrees of freedom (homework).

“Adiabatic demagnetization” is the magnetic version of adiabatic expansion:
pdV is replaced by −BdM , where M is the component of the magnetic moment
parallel to the magnetic field B. With this replacement, the first law dE = T dS −
pdV becomes

dE = T dS + BdM . (24.1)

So you would think that the magnetic counterpart of cooling a gas by letting it
expand (dV positive) under reduced pressure would be to let it demagnetize (dM
negative) under a reduced magnetic field. This line of thinking is indeed correct,
but the analogy with a gas is not so good at very low temperatures.

There is another and simpler way of understanding adiabatic demagnetization,
which depends on the following two observations.

1 A larger magnetic moment means more ordering of the atomic spins and therefore

smaller entropy, as illustrated in Table 24.1,

2 The magnetic moment of the sample depends on the ratio B/T (equation 17.9),

M = Nµz = N

∑
µz

µze
µz B/kT∑

µz
eµz B/kT

.

According to the first observation, if we begin with a magnetized sample at a very
cold temperature where all the entropy is in the magnetic degrees of freedom
and reduce the magnetic field to zero quasistatically and adiabatically, so that
the entropy remains constant, the magnetic moment cannot change (so the term



Low temperatures and degenerate systems 509

Table 24.1. Some configurations of four spin-1/2 particles, each with magnetic
moment µ. � is the number of states. The larger the magnetic moment of the
system, the smaller its entropy

Magnetic
Spin configurations � S = k ln � moment

↑↑↑↑ 1 k ln 1 4µ

↑↑↑↓, ↑↑↓↑, ↑↓↑↑, ↓↑↑↑ 4 k ln 4 2µ

↑↑↓↓, ↑↓↑↓, ↑↓↓↑, ↓↓↑↑, ↓↑↓↑, ↓↑↑↓ 6 k ln 6 0

“demagnetization” is misleading). But, according to the second observation, this
means that the ratio B/T also remains constant:

B

T
= constant (adiabatic, M = constant). (24.2)

Consequently, as we reduce the imposed external magnetic field adiabatically,
the temperature falls proportionally.

The method of adiabatic demagnetization, then, is the following three-step
process.

� Refrigerate a paramagnetic system in a strong magnetic field to the lowest temperature

possible.
� Insulate the system from its refrigerated environment.
� Reduce the imposed magnetic field B to zero.

Equation 24.2 implies that we could reach absolute zero simply by mak-
ing B = 0. Unfortunately, two things prevent us from quite getting there.
First, as the spin temperature falls below that of the lattice, energy will
flow from the lattice to the spin states, causing some “demagnetization”
and preventing their reaching the absolute-zero goal. Although the lat-
tice carries very little energy at these low temperatures, the energy is not
zero.

Second, even though we can remove the external field completely there will
still be a little residual magnetism internal to the material, as the internal magnetic
moments interact among themselves. This turns out to be a larger problem than
the heat from the lattice, so a great deal of effort goes into reducing this self-
interaction impediment.

Sometimes nuclear magnetic moments are used instead, because they are much
weaker and therefore have less interaction between neighbors. And sometimes,
both are used in tandem. The adiabatic demagnetization of electrons in para-
magnetic salts is used to get the sample environment down to the microkelvin
range. Then nuclear magnetic moments are used in the next step to reduce the
temperature yet further.
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A.4 Optical methods

When an atom absorbs light from a laser, it recoils owing to the conservation of
momentum. Of course the absorbed light is quickly reemitted, but in a random
direction. So on average there is a net change in momentum in the direction of
the incident laser beam.

One method of confining a gas and isolating it from its warmer surroundings
uses the splitting of atomic energy levels in the presence of imposed nonuniform
magnetic fields. Atoms leaving a central region encounter slightly different mag-
netic fields and therefore have slightly different line splittings compared with
atoms that remain at the center. We can therefore tune our lasers carefully to the
level splittings of atoms that have left the central region. These atoms will then
absorb the laser photons and be pushed back, whereas those that have remained
near the center will be unaffected.

Optical cooling uses the Doppler effect. Atoms approaching a light source
“see” a slightly higher frequency than those at rest. Thermal motions tend to
make a gas spread out, those with the fastest motions spreading fastest. So we
bombard our gas from all directions with lasers whose light frequency will be
absorbed by approaching atoms and not by those standing still. This pushes
these faster-moving atoms back and reduces their motion. Temperatures in the
microkelvin range have been achieved this way.

Further temperature reduction can be achieved by imposing the above optical
methods and then letting the fastest of the remaining atoms go (like diffusive cool-
ing). The slower-moving atoms remain near the center and have correspondingly
lower temperatures. Temperatures in the nanokelvin range have been reached this
way, and true Bose--Einstein condensation (see Section B) has been observed.

A.5 Measuring low temperatures

Once we have cooled the system, how can we tell what its temperature is? Some-
times, we can use the properties of the system itself. For example, in the case of
optically cooled gases we can turn off the trapping mechanism and see how fast
the gas expands. The temperature reflects the thermal motions of the particles,
and therefore the rate of expansion. In the case of adiabatic demagnetization, we
can use the definition of temperature, (equation 8.2)

1

T
=

(
�S

�E

)
�W=0

.

We add a small amount of energy �E and determine the change in entropy �S
by measuring the change in magnetic moment (as illustrated in Table 24.1). We
ensure that no work is done, �W = B�M = 0, by ensuring that there is no
magnetic field (B = 0).

In other cases, we include a different system in our cooled sample to serve as
a thermometer. For example, we might use a material whose low-temperature
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electrical or magnetic properties are already known. We can then determine
the temperature by measuring this property. Or, we might measure the relative
populations of closely spaced nuclear or electronic levels in some material. These
are related to the temperature through

Ni

N j
= Pi

Pj
= Ce−βεi

Ce−βε j
= e−β(εi −ε j ).

Taking the logarithm of both sides and solving for the temperature gives (home-
work)

T = εi −ε j

k ln(N j/Ni )
. (24.4)

These are just some examples. In general, the measurement of low tempera-
tures involves experimental ingenuity in choosing a thermometer that is appro-
priate for the system and has minimal impact on it. All measurements perturb the
system. For example, the measurement of level populations or the rate of expan-
sion involves the absorption or scattering of light, respectively. And because low-
temperature heat capacities are so small, the addition of even very tiny amounts
of energy cause huge increases in the system’s temperature. This fact makes all
forms of low-temperature studies (including temperature measurement) particu-
larly delicate and challenging.

Example 24.1 Suppose that two levels are separated by 10−6 eV and that the
population of the lower level is 10 times that of the upper level. What is the
temperature?

According to equation 24.4, the answer is

T = 10−6 eV

k ln(10)
= 5 mK.

Summary of Section A

A degenerate system is confined to a small volume in six-dimensional phase space.

The cause of degeneracy may be a restricted volume in position space owing to high

densities or a restricted volume in momentum space owing to small masses or low

temperatures.

If we wish to make something colder than anything in its environment, then the

cooling must be done adiabatically, because otherwise any heat flow would be in the

wrong direction. These adiabatic cooling processes could be mechanical, such as the

expansion of gases, or diffusive, such as evaporation.

Diffusive cooling includes the throttling process, in which the fluid does work on

itself as it expands through a constriction. It also includes the more efficient

expansion against a piston, although engineering challenges make the equipment

more expensive.
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The evaporation of liquid helium in a vacuum can produce temperatures down to

around 1 K for 4He and 0.3 K for 3He. The helium dilution refrigerator works by

evaporating liquid 3He into 4He, which reduces the potential barrier to the

evaporating 3He atoms. With this process, temperatures of millikelvins can be

maintained.

Adiabatic demagnetization is the magnetic equivalent of volume expansion. At

very low temperatures, virtually all the entropy is in the spin states, which determine

the magnetic moment of the material. In quasistatic adiabatic processes the number

of spin states remains constant, as does the magnetic moment, which depends on the

ratio B/T . So if we reduce the external magnetic field adiabatically in this way, the

temperature must decrease with it.

Optical methods use the fact that atoms recoil upon absorbing light. We tune the

frequency of the laser light to match that of atoms whose absorption frequencies

have been changed by imposed nonuniform magnetic fields or by their own motion.

We can use these optical techniques for both confinement and cooling.

Methods for measuring low temperatures include measuring the properties of a

material whose behavior is known, measuring expansion rates of gases, measuring

the change in entropy with energy for a paramagnetic substance, and measuring the

occupation of closely spaced levels. All such measurements perturb the system, so

measurement is a particularly sensitive process at low temperatures where heat

capacities are very small.

B Degenerate boson systems

B.1 Bose--Einstein condensation

We now turn our attention to systems of noninteracting bosons whose total num-
ber N is fixed.4 These systems display particularly interesting behaviors at low
temperatures, as particles become trapped in the ground state -- a process referred
to as Bose--Einstein condensation.5 This ground-state entrapment occurs at con-
siderably higher temperatures than our “classical” intuition might suggest. There
are two related reasons for this.

� First, the counting of states for identical bosons favors states of multiple occupancy. As

we learned in Chapter 19 (see Figures 19.3 and 19.4), the probability of finding all N

in the same state, such as the ground state, is roughly N ! times larger than the classical

prediction.

4 This is in contrast with the photons and phonons studied in Chapters 21 and 22, for which the

number changes with temperature and the chemical potential is zero, as dictated by the second law.
5 The 2001 Nobel Prize in Physics was awarded to Professors Cornell, Keterle, and Wieman for

producing and studying Bose--Einstein condensation in dilute gases of alkali atoms.
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� Second, the chemical potential for a system of degenerate bosons is extremely close

to the ground state. So the occupation number falls off very rapidly, giving all excited

states very low occupancies. To illustrate this, consider a small system of 1022 bosons

at 0.1 K. According to equation 20.10 (µ = −kT/N), the chemical potential would be

only −10−27 eV. For comparison, the first excited state for a cubic centimeter of dense

gas, (e.g. liquid helium), would be at about +10−16 eV, therefore being 1011 times further

from the ground state and having an occupation number that is 1011 times smaller. As

can be shown in the homework problems, a single particle, or any number of classical

particles, would have a nearly equal probability of occupying either the ground or the

first excited state. So the effect of many identical particles is crucial here.

The Einstein model

For a more quantitative treatment of boson condensation, we sometimes use a
model proposed by Einstein. In this model the distribution of excited states is that
of a quantum gas, and the ground state is handled separately.6 Also, because the
chemical potential is so very close to the ε = 0 ground state (see the preceding
paragraph), we set it equal to zero.

According to equation 20.1, the density of states in a nonrelativistic quantum
gas is7

g(ε) = Cε1/2, with C = 2πV (2m)3/2

h3
. (24.5)

The number of bosons in excited states is the product of the number of states
times the occupation number of each. Using x = ε/kT we have

Nexcited =
∫

n(ε)g(ε)dε = C

∫ ∞

0

ε1/2dε

eβε − 1
−→ C(kT )3/2

∫ ∞

0

x1/2dx

ex − 1
.

Numerical evaluation of the integral on the right gives the value 2.32, so our
result is

Nexcited = 2.32C(kT)3/2. (24.6)

Something is obviously wrong with this result. It implies that the number of
bosons in excited states increases indefinitely with temperature, whereas there
can be no more than N . The source of this error is our assumption that the
chemical potential remains equal to zero and does not change as the temperature
is increased. But we learned in subsections 14A.1 and 20D.2 (equations 14.1 and
20.17) that for a system with a fixed number of bosons the chemical potential
must decrease as the temperature increases (Figure 24.3).

6 If we didn’t treat the ground state separately, then when we switched from summation to integration

over states, the density of states would cut out the ground state completely, because according to

equations 20.1 or 24.5, g(0) = 0. This omission would be a disastrous omission at low temperatures.
7 We will assume that the number of spin orientations for our bosons is 1.
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Figure 24.3 The
distribution of particles is
the product of the density
of states and the
occupation number,
which depends on the
chemical potential. (Top)
In the Einstein model, we
assume that µ = 0 at all
temperatures below T0.
Consequently, the total
number of particles in
excited states (i.e., the
area under the dN/dε

curve) increases
indefinitely with
temperature. (Bottom) In
reality, the chemical
potential must decrease
with increasing
temperature, so that the
number of particles in
excited states does not
grow past N.

In light of this problem, we make the crude approximation that the result 24.6
is valid up to the temperature T0 at which all N bosons are in excited states. Above
this temperature, the number in excited states remains at N , because there can
be no more. To find this temperature T0, we set the number of bosons in excited
states equal to N and solve for T0:

N = 2.32C(kT0)3/2, (24.7)

so with C from equation 24.5,

kT0 =
(

N

2.32C

)2/3

= h2

2m

(
N

4.64πV

)2/3

. (24.8)

There are two very interesting things about this result.

� If we write the momentum as p = h/λ then this maximum energy kT0 = p2/2m

has a wavelength of about twice the interparticle spacing (λ = (4.64πV/N )1/3 =
2.4(V/N )1/3). We have seen this same thing twice before in completely different systems

(the Debye cutoff for phonons and the Fermi level for degenerate fermions).
� Using the atomic mass and density of liquid helium gives T0 ≈ 3 K (homework), which

is not too much different from the observed temperature, 2.18 K, for the onset of

condensation into the ground state. This gives us added confidence in the model.

For temperatures below T0, the fraction of atoms in excited states, N/N0, is
found by dividing equation 24.6 by 24.7. Above T0, all N atoms are in the excited
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all in excited states for T > T0
N

Nexcited = N(T /T0)3/2

Nground = N[1 − (T /T0)3/2]

T0
T

Figure 24.4 Plots of the
number of bosons in the
ground state and in
excited states as a
function of temperature
for the Einstein model.

states. The number in the ground state is simply equal to the number that are not
in excited states (Figure 24.4):

T ≤ T0,
Nexcited

N
=

(
T

T0

)3/2

,
Nground

N
= 1 −

(
T

T0

)3/2

;

T > T0,
Nexcited

N
= 1,

Nground

N
= 0. (24.9)

That is, for low temperatures the number of atoms in excited states increases as
T 3/2 until all atoms are in excited states. Above temperature T0, all N atoms are
in excited states.

B.2 Superfluid liquid helium

Liquid helium takes on surprising properties. Although there are some very weak
interatomic forces that cause it to liquefy at low temperatures, applying the pre-
ceding model of a gas of noninteracting bosons does give us some insight into
its behavior.

The reason that liquid helium fails to freeze can be traced to the small atomic
mass and weak interatomic forces. If we write the energy of the zero-point oscil-
lations as

εzero point = 1
2 hω = 1

2 κ A2

and express the angular frequency in terms of the force constant and mass (ω =√
κ/m) the above equation tells us that the amplitude of these oscillations is given

by

A = h1/2

(κm)1/4 . (24.10)

For helium, the atomic mass and interaction strength (m and κ) are so small
that the amplitude would be comparable with the atomic spacings (homework).
Consequently, if helium were a solid then it would spontaneously melt from its
own zero-point oscillations.
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Figure 24.5 Phase
diagrams for 3He (left)
and 4He (right) at low
temperatures. The two isotopes of helium behave differently at low temperatures

(Figure 24.5). One is a fermion and one a boson. For both isotopes the two
electrons are in a state of zero total angular momentum, but the 3He nucleus has
a total spin of 1/2 whereas that of the 4He nucleus is zero. The 4He isotope is 106

times more abundant, so unless 3He is specifically mentioned, the name “liquid
helium” refers to 4He.

At atmospheric pressure, helium condenses into a normal liquid at 4.22 K.
At 2.18 K it begins another phase transition to a “superfluid.” This marks the
onset of the condensation of 4He bosons into the ground state. This temperature
is called the “lambda point” because of the shape of the heat capacity curve
(Figure 24.6). The phase above 2.18 K is called “helium I” and that below 2.18 K is
“helium II.” As the temperature is lowered still further, the superfluid component
grows and the normal fluid component decreases.

The superfluid component gives the system the remarkable properties of seem-
ingly zero viscosity and infinite thermal conductivity. The lack of viscosity means
that the superfluid component can flow through the smallest crack without imped-
iment, and if you put it into circular motion around the container, it keeps on going
forever. You might wonder how bosons in the state of zero energy can flow. The
explanation is that from their point of view they are standing still and the container
is rotating.

Infinite thermal conductivity means that heat seems to be disbursed infinitely
fast. Regardless of where you heat the liquid, it will evaporate from the top surface
where the pressure and therefore the boiling point is lowest. This contrasts with
normal fluids, in which the vapor bubbles tend to form and rise from the point
where the heat is added. Therefore, the He I--He II phase transition is visually
characterized by the disappearance of bubbles and boiling.
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Figure 24.6 A plot of heat capacity vs. temperature for liquid helium. The phase
transition between helium I and helium II is called the λ-point, because of the shape
of this curve. Above the λ-point (right) liquid helium boils. But below the λ-point (left)
the bubbles disappear. Owing to infinite thermal conductivity the temperature is
uniform, so the helium II vaporizes from the top surface where the pressure is least.

B.3 Fermions?

It is particularly interesting that certain fermion systems also undergo Bose--
Einstein condensation. At first thought this might seem impossible since identical
fermions obey the exclusion principle, which prevents any two fermions from
occupying the same quantum state. How then, could large numbers of them
condense into the same ground state?

The answer to this riddle is that any group of an even number of fermions is
itself a boson. Two spin-1/2 fermions, for example, have a combined spin of either
1 or 0 (in units of h). Add to that any relative angular momentum, which is also
an integer, and the total angular momentum of the system is an integer. Therefore,
any pair of fermions is a boson. (Think of 4He, for example, which consist of
two protons, two neutrons, and two electrons. Together, these six fermions form a
boson of zero total angular momentum.) The fermion substructure could restrict
the overlap in position space. The resulting larger volumes in position space would
require correspondingly smaller volumes in momentum space -- and hence lower
temperatures -- in order for the substance to condense.

Particularly interesting are systems of 3He, which undergoes a Bose--Einstein
type of condensation into a superfluid at temperatures below 3 mK, and of conduc-
tion electrons, which may undergo a superconducting transition8 at temperatures

8 The electrical resistance of many ordinary metals drops suddenly to zero when cooled to a few

kelvins. Once started, a current through a loop of one of these materials keeps going indefinitely.
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Table 24.2. Superconducting transition temperature in
zero magnetic field for various metals

Metal Transition
temperature (K)

Metal Transition
temperature (K)

Al 1.18 U 0.68
V 5.38 Nb3Sn 18.05
Nb 9.20 Nb3Al 17.5
Sn 3.72 V3Si 17.1
Hg 4.15 La3In 10.4
Pb 7.19

Figure 24.7 Interactions
between superconducting
electrons are mediated by
phonons. That is, an
electron interacts with
one lattice point, and the
elastic wave that it
produces travels through
the solid until it transfers
this energy to some other
electron.

typically of a few kelvins (Table 24.2). These fermions form pairs having
equal and opposite momenta (in the appropriate reference frame). This makes
each pair a boson with zero total momentum and therefore in the zero-energy
ground state. The individual members of each pair may be widely separated
spatially, so the interactions that correlate their behaviors involve other interven-
ing particles. In the case of superfluid 3He the correlating interactions involve
the nuclear magnetic moments, and in the case of a superconductor, the
electron pairs interact via phonons traveling through the lattice (Figure 24.7).

Summary of Section B

We examine systems with a fixed number N of identical bosons at low temperatures.

The entrapment of bosons in the ground state is called Bose--Einstein condensation.

It occurs at higher temperatures than our classical intuition would suggest because

of (1) the counting of states for identical particles and (2) the fact that the chemical
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potential is so close to the ground state that the occupation number for excited states

is very small.

Einstein proposed a model for this in which the chemical potential is

approximated as zero, the excited states are treated as those of a gas, and the ground

state is treated separately. The number of bosons in excited states increases as T 3/2

until the temperature T0 is reached where all Nare in excited states (equation 24.9):

T ≤ T0,
Nexcited

N
=

(
T

T0

)3/2 Nground

N
= 1 −

(
T

T0

)3/2

;

T > T0,
Nexcited

N
= 1

Nground

N
= 0.

Here T0 is given by (equation 24.8)

kT0 =
(

N

2.32C

)2/3

= h2

2m

(
N

4.64πV

)2/3

.

Although there are weak interatomic forces among helium atoms (which cause

its liquefaction at low temperatures) it does undergo a condensation into the ground

state analogous to a Bose--Einstein condensation. The two isotopes of helium behave

differently, because one is a fermion and one a boson. The 4He isotope is 106 times

more abundant so, unless 3He is specified, the name liquid helium refers to 4He.

At atmospheric pressure, helium condenses into a normal liquid at 4.22 K. At the

lambda point (2.18 K) it begins a phase transition to a superfluid, as atoms start

becoming entrapped in the ground state. As the temperature is lowered still further,

the superfluid component grows and the normal fluid component decreases. The

liquid above 2.18 K is called helium I and below 2.18 K is called helium II. The He

I--He II phase transition is visually characterized by the disappearance of bubbles

and boiling.

Some fermion systems can undergo Bose--Einstein type condensations at low

temperatures when the fermions pair up to form bosons. Interesting examples

include 3He, which undergoes a superfluid transition at 3 mK, and conduction

electrons in metals, which undergo superconducting transitions at typically a few

kelvins. Interactions that correlate the motions of the fermion pairs are carried

through the intervening material by nuclear magnetic moments for 3He and by

lattice vibrations for conduction electrons.

C Stellar collapse

We now examine systems whose degeneracy is due to extremely high parti-
cle densities rather than to extremely low temperatures. That is, the scarcity of
available quantum states is due to small volumes in position space rather than
in momentum space. Stellar corpses are degenerate systems with huge masses
and high temperatures. Some of these are produced in spectacular explosions,
which release more energy in a few seconds than was released during the entire
preceding lifetime of the star.
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C.1 The death of a star

Our Sun is a typical star. Its diameter is over 100 times larger than Earth’s, and
it could hold more than a million Earths within it. But in spite of its extremely
strong gravity and highly compressible materials, its average density is only
slightly greater than that of water. Radiation pressure successfully opposes grav-
itational collapse. But some day the core’s nuclear fuel will be exhausted, the
thermonuclear reactor will shut down, and there will be no more radiation pres-
sure to oppose the collapse. The remnant material will be compressed to an object
about the size of the Earth and a million times denser.

Our Sun is typical. Gravitational collapse is the final destiny of all stars.
These collapses happen quickly and, during one of these brief events, the outer
layers may be blown out into space in a spectacular display. But the bulk of the
material remains in a small, dense, collapsed object, whose final size is determined
primarily by the fact that no two identical fermions may be forced into the same
quantum state.

C.2 White dwarfs and neutron stars

From the uncertainty principle, we know that a particle confined to a region of
length r has an associated momentum of roughly h/r , and therefore a kinetic
energy of

εk = p2

2m
≈ (h/r )2

2m
.

Notice that particles with smaller masses have larger kinetic energies. Therefore
less massive particles exert a greater pressure to oppose further collapse. This
important feature is maintained in the relativistic treatment that follows.

Since electrons are much less massive than nucleons, the electrons normally
acquire the bulk of the kinetic energy and limit the collapse. The resulting body is
called a “white dwarf” which very slowly cools to “red” and then “brown” dwarf
stages. If the star’s mass is greater than 1.4 solar masses, however, the gravity
is so strong that it forces electrons and protons into each other to form neutrons
along with neutrinos which escape into space:

e− + p+ → n + ν. (24.11)

The result is a “neutron star.” If the Sun were the size of an average two-story
house, a typical white dwarf would be the size of a grapefruit, and a neutron
star would be the size of a grain of salt. Finally, if the collapsed star is more than
about three times as massive as our Sun, it becomes an extremely small and dense
“black hole.”

We now look more closely at the electrons in a white dwarf or the neutrons
in a neutron star. In a degenerate gas of N fermions, all the quantum states up
to a certain energy are occupied, and all those above that energy are empty. We
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use this fact to determine the maximum momentum of the fermions, pmax, in the
collapsed star. There are N/2 identical spin-up fermions and N/2 identical spin-
down fermions, no two of which may occupy the same quantum state. Therefore,
the number of states for either up or down fermions is N/2:

Vr Vp

h3
= N

2
⇒

(
4
3 π R3

) (
4
3 πp3

max

)
h3

= N

2
, (24.12)

where R is the radius of the collapsed star. Solving for pmax gives

pmax =
(

9

32π2

)1/3

N 1/3 h

R
(R = radius of collapsed star).

It is easy to show (homework or equation 20.15) that in a degenerate gas the
mean square momentum is (3/5) p2

max, so we can write the root mean square
momentum as9

prms =
√

3

5
pmax = ηN 1/3 h

R
, (24.13)

where

η =
√

3

5

(
9

32π2

)1/3

= 0.237.

Notice that the momentum is inversely related to the star’s radius R. The further the
collapse, the larger the average momentum. (The smaller the volume in position
space, the larger the volume in momentum space that is needed to accommodate
the fermions.)

C.3 The size of a collapsed star

We now demonstrate that this simple result of quantum statistics determines the
size of these stellar corpses. The gravitational energy released when a star of
mass M collapses to radius R is proportional to GM2/R. If the resulting object is
of uniform density, and the final radius is small compared with the initial radius,
then the constant of proportionality is 3/5 (homework).10 It is customary to write

potential energy lost = �
M2

R
, where � ≈ 3

5
G.

Conservation of energy dictates that potential energy lost is equal to kinetic
energy gained, and this (relativistic) kinetic energy is shared among the N degen-
erate fermions:

P E lost = K Egained ⇒ �
M2

R
= N (

√
p2c2 + m2c4 − mc2). (24.14)

9 prms changes slightly from (3/5)1/2 pmax to (3/4)1/2 pmax in the extreme relativistic case. (So η

would change from 0.237 to 0.265 .) Although this must be considered in a more thorough treatment,

we ignore it here as it has little effect on our results.
10 In reality, the density is somewhat larger towards the center, so this constant is somewhat larger

than 3/5.
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(We ignore the initial potential and kinetic energies of the particles and the energy
radiated into space, because these are very small compared with the above terms.)

We replace p2 in this expression by the result 24.13 for the root mean square
momentum prms, and we solve equation 24.14 for the radius R of the collapsed
star. The result is (homework)

R = R0

(
1

x
− x

)
, (24.15a)

where

R0 = ηhN 1/3

2mc
, x = �M2

ηhcN 4/3
, η ≈ 0.237, � ≈ 3

5
G. (24.15b)

This result can be greatly simplified by writing the number of fermions N in
terms of the mass of the star M . We now do this. The result will be an expression
for the radius of a collapsed star that depends only on its mass M .

The thermonuclear fusion that powers a typical star turns hydrogen into helium
and some heavier nuclei. If the final stage is a white dwarf (as eventually our Sun
will become), most of the remaining mass is in nuclei such as helium and carbon,
for which the number of electrons is half the number of nucleons. If the final
stage is a neutron star, there are no electrons left. All have combined with protons
according to process 24.11. In either case, the number of nucleons doesn’t change
but the number of electrons does. For each proton that becomes a neutron, an
electron disappears.

We use our Sun as a reference, for which the mass Ms and number of fermions
Ns is given by

Ms = 1.99 × 1030 kg (24.16)

Ns = 0.60 × 1057 electrons when a white dwarf

Ns = 1.19 × 1057 nucleons

(The number of electrons at present is 1.01 × 1057.) We can then replace the
factors M, N appearing in the expressions 24.15b by setting

M = Ms

(
M

Ms

)
, N = Ns

(
N

Ns

)
= Ns

(
M

Ms
.

)

In the last step on the right, we have used the fact that the fermion composition
of all white dwarfs is about the same, and likewise that of all neutron stars. So
the number of fermions (whether electrons or neutrons) is in proportion to the
mass.

N

Ns
= M

Ms
.
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Figure 24.8 Plot of
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With these substitutions, the expressions 24.15b for R0 and x become

R0 = ηhN 1/3
s

2mc

(
M

Ms

)1/3

, x = �M2
s

ηhcN 4/3
s

(
M

Ms

)2/3

.

We now insert the numerical values of the constants η, h, m, c, G and use equa-
tions 24.16 for Ns and Ms and 24.15b for � to turn equation 24.15a into the
following user-friendly form (homework):

R = R0

(
1

x
− x

)
, (24.17a)

with, for white dwarf,

R0 = (2430 km)

(
M

Ms

)1/3

, x ≈ (0.664)

(
M

Ms

)2/3

(24.17b)

and for neutron stars,

R0 = (1.66 km)

(
M

Ms

)1/3

, x ≈ (0.267)

(
M

Ms

)2/3

. (24.17c)

The above results are displayed in Figure 24.8.
Take a moment to appreciate how simple these results are, and how they

simply reflect the fact that no two identical fermions may be forced into the same
quantum state. Also notice the following.

� The radii of neutron stars are only a few kilometers, and the radii of white dwarfs are

comparable with that of the Earth (6370 km).
� Larger masses have smaller radii. When x reaches 1.0, the radius goes to zero. Notice

that this corresponds to a star not much larger than our Sun (homework). So this line

of reasoning predicts black holes, even though we have not considered the physics of

nuclear forces or general relativity.
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Summary of Section C

When a star has exhausted the thermonuclear fuels in its core, fusion stops and the

star collapses to a size determined by the exclusion principle. As the star collapses,

fermions of smaller masses gain greater energies, so the electrons normally limit the

size of the collapsing star. The result is a white dwarf. If the star’s mass is greater

than 1.4 solar masses then its gravity is sufficient to force the electrons into the

nuclei, where they combine with the protons to form neutrons. When this happens,

the degenerate neutron system is what limits the star’s final size, and a neutron star

is formed. More massive stars collapse to smaller radii. If the corpse’s mass is

more than about three solar masses, the surface gravity becomes so strong that

nothing -- not even light -- can leave. We call these massive and completely

uncommunicative stars “black holes.”

In a degenerate fermion gas, all accessible quantum states are occupied. We use

this and the fact that in a degenerate gas 〈p2〉 = (3/5)p2
max, to obtain (equation

24.13)

prms = ηN 1/3 h

R
, where η ≈

√
3

5

(
9

32π 2

)1/3

= 0.237.

The momentum is inversely related to the radius of the collapsed star, because the

smaller the volume in coordinate space, the larger the volume in momentum space

needed to accommodate all the fermions. Consequently, both the decrease in

potential energy and the gain in kinetic energy are functions of the collapsed star’s

final size. We can solve the conservation of energy equation (equation 24.14)

P E lost = K Egained ⇒ �
M2

R
= N

(√
p2c2 + m2c4 − mc2

)
for the radius of the collapsed star, obtaining (equations 24.17)

R = R0

(
1

x
− x

)
with for white dwarfs,

R0 = (2430 km)

(
M

Ms

)1/3

, x ≈ (0.664)

(
M

Ms

)2/3

,

and for neutron stars,

R0 = (1.66 km)

(
M

Ms

)1/3

, x ≈ (0.267)

(
M

Ms

)2/3

.

Here M/Ms is the ratio of the star’s mass to that of our Sun.

Problems

Section A
1. (a) Using classical statistics show that for a temperature 0.02Te (kT e = ε1 −

ε0) there will be less than one particle out of 1021 in the first excited state.
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(b) What is the excitation temperature for a system whose first excited state
lies 0.1 eV above the ground state? 0.0001 eV above?

2. For a certain system, the first excited state lies 1 eV above the ground state.
Is the system degenerate at room temperature? At 106 K?

3. We have said that, at room temperature, much less than 1% of the con-
duction electrons in a typical metal are in the tail of the Fermi distribu-
tion. Estimate what the real fraction is. The number of states in the tail is
g(ε)�ε, with ε = µ, and the width of the tail is about �ε = kT . Half these
states have electrons in them, on average. Assume a fermion gas with a den-
sity of 1029 electrons per cubic meter. The density of states is g(ε) = Cε1/2,

with C = 4πV (2m)3/2/h3 and the Fermi level is given by equation 22.17.

4. In Chapter 22 we saw that the Debye temperature for a solid is typically
several hundred kelvins. There are as many phonon states as there are atoms
in the solid. Suppose that, for a certain solid at 100 K, the occupation number
for a particular phonon state is 1/2.
(a) Roughly what is the occupation number of this state at 0.1 K?

(b) Repeat the above for a state whose occupation number is 1/2 at 5 K.

5. Consider a system of six distinguishable spin-1/2 particles each with mag-
netic moment µ. List the various possible magnetic moments for this system
(in terms of µ) and give the entropy for each. (Remember: The number of dif-
ferent ways in which n of N elements can satisfy a criterion is N !/n!(N − n)!)

6. Consider a system of three distinguishable spin-1 particles each with mag-
netic moment µ. What is the entropy of the system if the total magnetic
moment is (a) 3µ, (b) µ?

7. What is the root mean square spreading speed for a gas of rubidium atoms
(m = 1.42 × 10−25 kg) at 10 µK?

8. Derive equation 24.4, which gives the temperature in terms of the relative
populations of two energy levels. (Use classical statistics, because here we
consider particles occupying various states, rather than vice versa.)

9. In the quasistatic adiabatic expansion of a gas, the entropy remains con-
stant, although more volume in position space becomes available through
the expansion. If the volume in position space increases, what must hap-
pen to the volume in momentum space and the temperature? In adiabatic
demagnetization, if the magnetic moment of the spin system decreases as the
external field is removed, what happens to the spin entropy of the system, the
entropy in the kinetic and other degrees of freedom, and the temperature?

10. In Chapter 12 we found that for the throttling process the enthalpy
H = E + pV remains constant. For an ideal gas, E = (ν/2)nRT and
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pV = nkT . For quasistatic adiabatic expansions we found that (equation 12.7)
T V γ−1 = constant, where γ = (ν + 2)/ν. Consider an ideal gas, with ν = 5
degrees of freedom per molecule, that begins at 290 K and expands to five
times this volume. What is the final temperature if this expansion is done (a)
via throttling, (b) via quasistatic adiabatic expansion?

11. In Chapter 21 we learned that the rate at which an object radiates energy is
proportional to T 4. Liquid nitrogen at 77 K surrounds a Dewar (i.e., thermos
bottle) holding liquid helium at 1 K.
(a) By what factor is the heat energy radiated into the Dewar reduced com-

pared with that which would be radiated if it were surrounded by materials
at room temperature, 295 K?

(b) Roughly how many times more energy is radiated from the liquid nitrogen
toward the liquid helium than vice versa?

12. Give examples of cooling via mechanical interactions, or via diffusive inter-
actions.

13. In earlier chapters we learned that, at high temperatures, a solid of N
atoms has a total thermal energy E = 3NkT . In Chapter 22, however, we
learned that at lower temperatures, some of these degrees of freedom are
not available. Expression 22.13 tells us that at temperatures well below
the Debye temperature (kT � k�D = εD) the internal energy is given by
E = 3NkT(π4/5)(kT/εD)3. That is, the number of degrees of freedom is
reduced from the high-temperature case by a factor (π4/5)(kT/εD)3.
(a) Use this to estimate the average number of degrees of freedom per atom

at 0.1 K for a solid whose Debye temperature is 100 K.
(b) If each atom has one magnetic degree of freedom, how much more energy

is carried in magnetic degrees of freedom than in vibrational degrees of
freedom at this temperature?

14. Why is adiabatic demagnetization done adiabatically? (That is, why is the
sample removed from the helium bath first?)

15. For the system of Table 24.1, when 10−7 eV of energy is added the magnetic
moment changes from 4 µ to 2µ. What is the temperature?

16. Consider a system that includes five spin-1/2 particles, each having magnetic
moment µ. The external magnetic field has been turned off. Suppose that in
addition to these five spin degrees of freedom, the system has three other
degrees of freedom. When 10−5 eV of energy is added to the system, its total
magnetic moment changes from +3µ to + µ.
(a) Assuming equipartition, how much added energy has gone into magnetic

degrees of freedom?
(b) By how much has the entropy of the magnetic moments increased?
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(c) What is the temperature of the system, as determined from the magnetic
properties of the system?

17. For N spin-1/2 particles, the number of different arrangements in which
n of them are spin up and the remaining N − n are spin down is given
by N !/[n!(N − n)!], where the factorials of large numbers can be calcu-
lated from Stirling’s approximation M! = (M/e)M . Consider a system of
1022 spin-1/2 particles, each having magnetic moment µ. Suppose that, in
addition, the system has 0.1 × 1022 other degrees of freedom.
(a) If the magnetic moment of the entire system is 1.1 × 1021µ, how many

particles are spin up?
(b) If the magnetic moment of the system were 1.0 × 1021µ how many

particles would be spin up?
(c) What is the change in spin entropy if the magnetic moment goes from

1.1 × 1021µ to 1.0 × 1021µ?
(d) This change occurs when 2 × 10−6 J of energy is added to the system.

What is the temperature?

18. Consider a system having 1024 spin-1/2 particles. The z-component of the
magnetic moment of each is ±µB (µB = 9.27 × 10−24 J/T). They are sitting
in a magnetic field, in the +z direction, of 0.5 tesla.
(a) If 70% of the particles are spin up, what is the temperature of the system?

(Hint: Use classical statistics.)
(b) If in state 1 70% of them are spin up, and in state 2 69.9% are spin up,

find the change in entropy in going from one state to the other. (Hint:
See the previous problem.)

(c) What is the change in the magnetic interaction energy between the two
states?

(d) If you use 1/T = �S/�E , do you get the same temperature as in part
(a)?

(e) If the system is insulated from its environment and the magnetic field is
reduced to 0.000 001 tesla, the magnetic moment remaining unchanged,
what is the new temperature of the system?

19. Two nuclear states have magnetic moments that differ by one nuclear mag-
neton. When B = 0.1 tesla, the populations of the two levels are in the ratio
1 : 2. What is the temperature?

20. In a certain type of molecule, electronic levels i and j are separated by
2 × 10−6 eV.
(a) If the ratio of the numbers of molecules in level j and in level i is 1 : 20,

what is the temperature of the system?
(b) If level k is 3 × 10−6 eV above level j , what is the ratio of the number

of molecules in level k and the number in level i?
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Section B
21. Using classical statistics, estimate the relative populations N2/N1 for two

levels separated by 10−15 eV, if the temperature is 0.1 K. (e−ε ≈ 1 − ε

for ε � 1.)

22. (a) Estimate a typical momentum (in one dimension) of a helium atom in
liquid helium, using the uncertainty principle along with the fact that the
density of liquid helium is 0.15 × 103 kg/m3.

(b) A change in kinetic energy is given by �(p2/2m) = (p/m)�p. Knowing
that excitation from the ground state requires flow velocities in excess
of 7 m/s for superfluid helium, estimate the change in momentum �p to
which this corresponds.

(c) Combine the above two results to estimate the energy needed for excita-
tions out of the ground state.

23. The zero-point oscillation energy of a simple harmonic oscillator is given
by ε = (1/2)κ A2 = (1/2) hω, where ω = (κ/m)1/2 is the fundamental fre-
quency of oscillation and A is the amplitude. If helium were a solid we would
guess that the excitation temperature (kT e = εexcitation) would be about 0.1 K,
because at 2.2 K all particles are excited and none are left in the ground
state. The first excited state has energy (3/2) hω.
(a) Using this information, estimate the amplitude of zero-point oscillations

if helium were a solid. (Hint: You should be able to find the value of ω

from the excitation temperature.)
(b) Compare your answer to part (a) with the average spacings of helium

atoms. Liquid helium has a density of 0.15 g/cm3.

24. If helium II has infinite thermal conductivity, explain why it vaporizes from
the top surface rather than boiling uniformly throughout its volume.

25. Consider what happens after you stir helium II to get it to swirl around inside
a circular container. If the normal-fluid component experiences friction with
the walls of the container and the superfluid component does not, describe
the subsequent motion of the two components.

26. The density of liquid helium is 0.15 g/cm3. Use this to find the value of T0

for the Einstein model.

27. At T = T0/2, what fraction of the bosons are in the ground state, according
to the Einstein model?

28. We are going to estimate what the temperature for transition to the supercon-
ducting state for a typical metal wire would be if there were no interactions
at all among the electrons. That is, we will treat the electrons as if they were
a gas of noninteracting fermions. In any one dimension (e.g., in the direction
along the wire), the electrons can move both ways, so the wave function that
describes them is a standing wave. This standing wave must have a node at
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both ends, because the electrons cannot be found beyond the boundary of the
metal. Therefore, the length of the metal must be equal to some number of
half-wavelengths.
(a) Show that the momentum of an electron must be given by p = nh/2L ,

where n is an integer and L is the length of the metal.
(b) Show that the change in kinetic energy of the electrons between two

neighboring states is given by

�ε = (p/m)�p = nh2/4L2m = 2ε/n.

(c) The density of electrons in a typical metal is 0.8 ×1029/m3. Using this and
equation 22.17, estimate the energy of the Fermi level µ ≈ εf = p2

f /2m
for the electrons in a typical metal. If the metal has length L = 2 cm, to
what value of the integer n does this correspond?

(d) Substituting the values of L, µ, and n from part (c) into the answer to part
(b), find the energy that separates two neighboring states for an electron
near the Fermi surface in a typical metal. To what excitation temperature
(kT e = εexcited) does this correspond?

(e) Can we conclude that this model (electrons as a noninteracting gas) is
appropriate for explaining superconductivity?

Section C
29. Consider adding a shell of thickness dr to a spherical object of uniform mass

density ρ and radius r . As the shell of material is brought in from infin-
ity, its loss in gravitational potential energy is given by dU = −GMdM/r ,
where the mass of the object is M = ρ(4/3)πr3 and that of the added shell
is ρ4πr2dr (the volume equals the area of the shell times its thickness).
Integrate this from r = 0 to r = R to show that the gravitational potential
energy lost in building up this object is given by U = −(3/5)GM2/R.

30. The number of quantum states in a phase-space volume d3rd3 p is given
by d3rd3 p/h3. If we integrate over all volume and all momentum angles,
this becomes (4πVr/h3)p2dp. If the momenta of the particles range from
p = 0 to p = pmax, show that the mean square momentum per particle is
given by (3/5)p2

max. Solve equation 24.12 for pmax and then use this with the
preceding result to derive equation 24.13.

31. Starting with the conservation of energy (24.14) and the momentum of a
fermion in a degenerate system (24.13), derive equations 24.15a, b for the
radius of a collapsed star.

32. Derive Equations 24.17c from 24.15 and 25.16.

33. What is the radius of a collapsed star that has the same mass as our Sun? One
that is three times as massive as our Sun?
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34. According to our results 24.17a--c, what would be the upper mass limit (in
solar masses) of a white dwarf? (Beyond this R → 0, so it would be a neutron
star.) At what mass would the radius of a neutron star go to zero?

35. Suppose that when a better model of stellar interiors is used, the value of �

(see the equation before 24.14) becomes (4/5)G rather than (3/5)G. In this
case:
(a) What would be the expressions for x in equations 24.17b, c?
(b) What would be the answers to problem 33?
(c) To question 34?
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Appendix A Magnetic moment and angular momentum

Consider a charge q moving in an elliptical orbit, as in Figure A.1. The area of the shaded

triangle is

dA = 1

2
base × height = 1

2
rdr sin θ

or, in vector form,

dA = 1

2
r × dr.

We relate this to the particle’s angular momentum by using dr = vdt and L = r × mv,

which gives

dA = 1

2
r × vdt = 1

2m
Ldt.

For constant angular momentum, integrating over one complete orbit gives a total area

A = 1

2m
LT, (A.1)

where T is the time for the charge to orbit the loop once.

We now relate this to the magnetic moment � = iA. The current intensity, i = q/T , is the

rate at which charge passes a given point on the loop. Combining this with the result A.1 for

the area of the loop gives

� = iA =
( q

T

) 1

2m
LT = q

2m
L. (A.2)

Appendix B Taylor series expansion

Any analytic function of x may be written as a polynomial of the form

f (x) = c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3 + · · ·
+ cn(x − a)n + · · · (B.1)

where a is a constant, as are the coefficients c0, c1, c2, . . . If we take the derivatives of this

expansion we get

f ′(x) = 0 + c1 + 2c2(x − a) + 3c3(x − a)2 + · · · + ncn(x − a)n−1 + · · ·
f ′′(x) = 0 + 0 + 2c2 + 6c3(x − a) + · · · + n(n − 1)cn (x − a)n−2 + · · ·

...

f (n)(x) = 0 + 0 + 0 + 0 + · · · + n!cn + · · ·

531



532 Appendices

dr sinq
dr = vd t

q q

r
dA = 12 base × height

 = 12 r dr sinq

Figure A.1 An elliptical
orbit. As indicated, the
area of the shaded
triangle is (1/2)rdr sin θ .

By evaluating each of these above expressions at the point x = a, we see that

f (a) = c0, f ′(a) = c1, f ′′(a) = 2!c2, . . . ,

f (n)(a) = n!cn, . . .

Hence, the coefficients are given by

cn = 1

n!
f (n)(a),

and so the expansion B.1 can be written as

f (x) = f (a) + f ′(a)(x − a) + 1

2!
f ′′(a)(x − a)2 + · · ·

+ 1

n!
f (n)(a)(x − a)n + · · ·

=
∞∑

n = 0

1

n!
f (n)(a)(x − a)n (B.2)

This is the Taylor series expansion of the function f (x) around the point x = a.

Appendix C The states accessible to a system

We now do the calculations for the results of Table 6.2 with more mathematical rigor. Because

the energy in the ith degree of freedom has the form εi = biξ
2
i , e.g. (1/2m)p2

x , we define a

new set of variables αi ≡ √
εi = √

biξi and rewrite the integral in equation 6.9 as∫
dξ1dξ2dξ3 · · · = (b1b2b3 · · ·)−1/2

∫
dα1dα2dα3 · · · . (C.1)

The integral
∫

dα1dα2dα3 · · · over all Nν degrees of freedom is simplified by noting that

the sum of the energies held in all the degrees of freedom must equal the total thermal energy

of the system:

ε1 + ε2 + · · · + εNν = α2
1 + α2

2 + · · · + α2
Nν = Etherm

This equation defines the surface of an Nν-dimensional sphere (x2
1 + x2

2 + · · · = R2) with

radius R2 = Etherm, so the integral
∫

dα1dα2dα3 · · · is the surface area of this

sphere.



Appendices 533

The area of an n-dimensional sphere is given by

(2π )n/2

(n − 2)!!
Rn−1 if n is even,

√
2

π

(2π)n/2

(n − 2)!!
Rn−1 if n is odd.

At large n we can set n − 2 ≈ n − 1 ≈ n; we consider n to be even and, using Stirling’s

formula, we write
n!!

2n/2
=

(n

2

)(
n − 2

2

)
· · · =

(n

2

) (n

2
− 1

)
· · · =

(n

2

)
! →

( n

2e

)n/2
. (C.2)

So, with n = Nν and R = √
Etherm, we get∫

dα1dα2 · · · dαNν ≈ (2π )n/2

n!!
Rn =

(
2eπ Etherm

Nν

)Nν/2

. (C.3)

Thus the integral in equation C.1 gives us a factor (2eπ Etherm/Nν)1/2 for every degree of

freedom. In addition, we must also include the following factors in our result:

� b−1/2 for every degree of freedom (equation C.1);
� 1/h1/2 for every variable over which we integrate (equation 6.9);
� V from integration over the x, y, z coordinates for each particle when the energy is

independent of the particle’s position (e.g. in a gas);
� 2π for integration over the angle for each rotational degree of freedom;
� A factor (e/N )N when correcting for identical particles in a gas.

Altogether, then, the number of states � = ωN
c accessible to a system of Nν degrees of

freedom is given by

ωN
c =




(
eV

Nh3/2

)N 1

hNν/2
(b1b2 . . . bNν )−1/2

(
2eπEtherm

Nν

)Nν/2

gas,

1

hNν/2
(b1b2 . . . bNν )−1/2

(
2eπEtherm

Nν

)Nν/2

solid,

(C.4)

where the constant b has the following form:

b =




1

2m
for each translational degree of freedom

(
εi = 1

2m
p2

i

)
,

κ

2
for each vibrational degree of freedom

(
εi = κ

2
x2

i

)
,

1

2I
for each rotational degree of freedom

(
εi = 1

2I
L2

i

)
.

There is also a factor 2π from the integration over the angle for each rotational degree of

freedom. So, for the common examples used in this book, � = ωN
c where

ωN
c =




eV

Nh3
m3/2

(
4eπ Etherm

3N

)3/2

monatomic gas (ν = 3),

eV

Nh5
4π2 I (m)3/2

(
4eπ Etherm

5N

)5/2

diatomic gas (ν = 5),

1

h3

(m

k

)3/2
(

4eπ Etherm

6N

)3

solid (ν = 6).

(C.5)

We can also write these in terms of the temperature using
Etherm

Nν
= 1

2
kT .
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Appendix D Energy distribution in interacting systems

We begin with equation 7.5 for the number of states accessible to two interacting systems with

n1 and n2 degrees of freedom each (equation 7.5):

�0(E1) = C En1/2
1 En2/2

2 ,

where E2 = E0 − E1 and C is a constant of proportionality. Working with the logarithm of

the number of states,

f (E1) ≡ ln �0 = ln C +
n1

2
ln E1 + n2

2
ln(E0 − E1), (D.1)

and expanding it in a Taylor series around E1 gives

f (E1) = f (E1) + ∂ f

∂ E1

∣∣∣∣
E1

(E1 − E1) + 1

2

∂2 f

∂ E2
1

∣∣∣∣
E1

(E1 − E1)2 + · · · . (D.2)

We assume a distribution sharply peaked at E1. By setting the first derivative equal to

zero, as must be true at a function’s maximum, we find the position of the peak and get

equipartition as a by-product (homework):

∂ f

∂ E1

∣∣∣∣
E1

= 0 ⇒ E1

E2

= n1

n2
. (D.3)

That is, the energy is distributed in proportion to the number of degrees of freedom. The

second derivative is also easily evaluated from equation D.1 above, giving (homework)

∂2 f

∂ E2
1

∣∣∣∣
E1

= − n0

2E1 E2

. (D.4)

Now that we know the first and second derivatives, we can take the antilogarithm of the

Taylor series D.2 to get the Gaussian form

�0(E1) = �0(E1)e−(E1−E1)2/2σ 2
, with σ 2 = 2E1 E2

n0
= n1n2

2n0
(kT )2, (D.5)

where we have used Ei = (ni/2)kT in evaluating σ 2. Because the probability is proportional

to the number of states (P ∝ �0), and the sum over all possible distributions gives a total

probability of 1, the distribution is the familiar Gaussian form of equation 3.7:

P(E1) = 1√
2πσ

e−(E1−E1)2/2σ 2
. (D.6)

Appendix E Standard integrals
∞∫

−∞
e−αx2

dx = 2

∞∫
0

e−αx2
dx =

(π

α

)1/2
(E.1)

∞∫
−∞

e−αx2
x2ndx = 2

∞∫
0

e−αx2
x2ndx

= 1 × 3 × 5 × · · · × (2n − 1)

2nαn

(π

α

)1/2
(E.2)

∞∫
−∞

e−αx2
x2n+1dx = 0 (E.3)

∞∫
0

e−αx2
x2n+1dx = n!

2αn+1
(E.4)
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Appendix F Nearly degenerate fermion gas

To evaluate the two integrals in equations 20.18 for nearly degenerate fermions, we integrate

by parts. Both integrals have the form

I ( y) =
∞∫

0

(
1

ex−y + 1

)
︸ ︷︷ ︸

u

(xκdx)︸ ︷︷ ︸
dv

=
(

1

ex−y + 1

)
︸ ︷︷ ︸

u

(
xκ+1

κ + 1

)
︸ ︷︷ ︸

v

∣∣∣∣∣∣∣∣∣

∞

0

−
∞∫

0

(
xκ+1

κ + 1

)
︸ ︷︷ ︸

v

( −ex−ydx

(ex−y + 1)2

)
︸ ︷︷ ︸

du

where κ = 1/2 for f (y) and κ = 3/2 for g(y). The first term on the right (uv) is zero at

both end points, and the second term (−∫vdu) is evaluated by noting that the fermion occupa-

tion number varies significantly only near ε ≈ µ. Hence, du is only nonzero near the point

x = y, and so it is convenient to expand v in a Taylor series around x = y : v(x) = v|x=y +
v ′∣∣

x=y
(x − y) + · · ·. Substituting the expression for v we obtain.

v = xκ+1

κ + 1
= yκ+1

κ + 1
+ yκ (x − y) + κyκ−1

2
(x − y)2 + · · ·

We now change variables to z = x − y and extend the lower limit from x = 0 to x = −∞
(since u = 1, hence du = 0 in that region), so the above integral becomes

I (y) = yκ+1

κ + 1

∞∫
−∞

ezdz

(ez + 1)2
+ yκ

∞∫
−∞

ez zdz

(ez + 1)2

+ κyκ−1

2

∞∫
−∞

ez z2dz

(ez + 1)2
+ · · ·

Of these three integrals, the first gives unity, the second is zero (the integrand is odd),1 and the

third gives π2/3. So our answer is

I (y) = yκ+1

κ + 1
+ κπ2 yκ−1

6
+ · · ·

Because κ = 1/2 for f (y) and κ = 3/2 for g(y), we have

f (y) = 2

3
y3/2

(
1 + π2

8y2
+ · · ·

)
,

g(y) = 2

5
y5/2

(
1 + 5π2

8y2
+ · · ·

)
.

(F.1)

We put the result for f (y) with y = µ/kT into equation 20.18a, divide both sides by (2/3)C,

and use equation 20.13 for εf to write this as

3N

2C
= ε

3/2
f = µ3/2

[
1 + π2

8

(
kT

µ

)2

+ · · ·
]

Now, for our approximation, we note that kT/µ � 1 for degenerate fermions, so the

correction term is small. So we can put µ ≈ εf in the correction term and ignore all higher

1 ez z/(ez + 1)2 = z/(ez/2 + e−z/2)2.
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order terms to get

ε
3/2
f ≈ µ3/2

[
1 + π2

8

(
kT

εf

)2
]

⇒ µ ≈ εf

[
1 + π2

8

(
kT

εf

)2
]−2/3

.

We next use (1 + δ)−x ≈ 1 − xδ for small δ to get

µ ≈ εf

[
1 − π2

12

(
kT

εf

)2
]

. (F.2)

Regarding the energy, we notice that the average energy per particle is given by

ε = E

N
= kT

g(y)

f (y)
.

Using y = µ/(kT), results F.1 for g(y) and f (y), and the above approximations we get

ε = kT
g(y)

f (y)
≈ 3

5
µ

(
1 + 5π2

8y2

)(
1 + π2

8y2

)−1

≈ 3

5
µ

(
1 + π2

2y2

)
.

With µ from equation F.2 this becomes

ε ≈ 3

5
εf

[
1 − π2

12

(
kT

εf

)2
][

1 + π2

2

(
kT

εf

)2
]

≈ 3

5
εf

[
1 + 5π2

12

(
kT

εf

)2
]

. (F.3)
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Problem solutions

Chapter 1

1. 6 ×10−6 3. The result of 20 flips is closer to 50--50 on average. The probability of exactly

10 heads is small (0.18). 7. Foolish. The probability each time is 1/2, regardless of past

history. 9. 12 11. (a) 0.2 nm (b) 3.3 × 10−24 kg m/s (c) Electron, 3.6 × 106 m/s; proton,

2.0 × 103 m/s (d) Electron, 38 eV; proton, 0.021 eV (e) 6200 eV 13. �px = 6.6 ×
10−24 kg m/s, �vx = 7.3 × 106 m/s 15. 13 17. (a) 1.6 × 10−14 m (b) 3.2 MeV

19. (a) ×2 (b) ×2 (c) ×8 21. (a) 7.6 × 1054 states per joule or1.2 × 1036 states per eV

(b) 8.4 states per eV 23. The proton and electron could be in a state with orbital angular

momentum corresponding to l = 1, oriented opposite to the two parallel spins. 25. |µ| =
2.44 × 10−26 J/T, µz = ±1.41 × 10−26 J/T, U = ±1.41 × 10−26 J 27. ±7.4 × 10−24 J,

±3.7 × 10−24 J, 0 J 29. If the kinetic energy were zero, the momentum would be zero, the

wavelength would be infinite, and so the particle would not be contained within the potential

well. 31. 77 (277 ≈ 1023)

Chapter 2

1. (a) f + g = ∑
Ps ( fs + gs ) = ∑

Ps fss + ∑
Ps gs = f + g (b) c f = ∑

Psc fs

= c
∑

Ps fs = c f 3. (a) 33 1
6 (b) 5 1

6 (c) − 4
3 (d) 63 1

2 5. 7 7
8 7. (a) 3/8 (b) 6 (c)

hhtt, htht, htth, thht, thth, tthh, yes 9. 1/36 11. (a) 0.0042, 56 (b) 0.0046 13. (a)

0.313 (b) 10 15. 1820 17. 0.0252 19. (a) 6.7 × 10−6 (b) 4.5 × 10−2 (c) 2.1

× 10−35 21. 1.0 × 1029 23.(a) 0.062 (b) 0.062 27. 3/40 (there are 40 unseen cards

and 3 of them are queens) 29. 5.8 cents 31. 12.25

Chapter 3

1. (a) 16.7 (b) 3.7 (c) 0.22 3. Justify each step in equation 3.3. 5. (a) 10 (b) 2.6 (c)

0.26 7. (a) 50 (b) 5 (c) 0.080 (d) 0.067 (9) (a) (1) Definition of mean values with

n2 = ∑
n2 Pn(n); (2) n2 pn =

(
p ∂

∂p

)2

pn ; (3) binomial expansion,
∑

n
N !

n!(N−n)! pnq N−n =
(p + q)N . (b) n =

(
p ∂

∂p

)
(p + q)n (c) Find the derivatives and evaluate them at p + q =

1 (q = 1 − p, etc.). 11. 10116 13. We know with certainty (i.e., probability = 1) that a

system must be in one of its possible configurations. Therefore, the sum over all

configurations must give a total probability equal to unity. 15. 0.607 17. (a) 60

(b) 7.07 (c) 0.0564 (d) 7.9 × 10−3 19. (a) 0.0133 (b) 5 × 10−198 21. (a) Gaussian,

0.44; binomial, 0.40 (b) Gaussian, 0.040; binomial, 0.054 (c) Gaussian,

0.24; binomial, 0.34 23. (a) Gaussian, 0.178; binomial, 0.176 (b) Gaussian, 0.120;
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binomial, 0.120 (c) Gaussian, 0.015; binomial, 0.015, (d) Gaussian, 0.00030; binomial,

0.00018 25. 1 = A2
∫

e−B(x2+y2)dxdy = A2
∫

e−Br2
r drdθ = πA2/B 27. (a) 0.20 m,

0.872 m (b) 80 m, 17.4 m (c) 4.4, 0.22 29. (a) 0 (b) 3.33 × 10−11 m2 (c) 0 (d) 0.026

m (e) 1.08 × 105 s = 30 hours 31. (a) 0, 1.73 × 10−10 m (b) 0, 5.5 × 10−4 m 33. (a)

2.5 × 10−14 m (b) 5 × 10−10 m (c) 12.6 A 35. 4.64 m, 36.2 m, 176 m (using the

standard deviation as the characteristic spread) 37. S2
N − SN

2 = Ns2 + N (N − 1)s2 −
(Ns)2 = N (s2 − s2) = Nσ 2

Chapter 4

3. (a) f ′(0) = 0, f ′ ′(0) = +2 (b) f (x) = −2 + 0x + x2 + x3 + 0x4 (c) (−0.57, +0.54)

5. sin x = ∑∞
n=0

(−1)n

(2n+1)! x2n+1, cos x = ∑∞
n=0

(−1)n

(2n)! x2n, ln(1 + x) = ∑∞
n=1

(−1)n+1

n xn, ex =∑∞
n=0

1
n! xn 7. B, C, A 9. (a) 1.42 × 10−46kg m2 (b) 4.9 × 10−4 eV (c) 5.7 K

11. (a) 4.58 × 10−48kg m2 (b) 1.5 × 10−2 eV (c) 176 K 13. H2O is not a linear molecule

as is N2. Therefore, H2O has appreciable moments of inertia about all three rotational axes,

and so rotations about all three axes can be excited. For N2, however, the rotational inertia

about one axis (the one that passes through both atomic nuclei) is extremely small, and so the

energy of even the first excited rotational state about this axis is too high to be reached.

15. (a) 6 (b) 3 (c) no (d) decreased (e) The iron atoms are released from the potential

wells in which they were bound when in the solid state, so their potential energy in the liquid

state is higher (although still negative). 17. 20.8 J/(mole K) 19. (a) 0.0707 eV, 0.0707 eV

(b) 0.0625 eV (c) �u0 = +0.0625 eV (d) It remains the same. 21. (a) 35.3 J(1.74 × 1022

degrees of freedom) (b) 420 J(2.076 × 1023 degrees of freedom)

Chapter 5

1. (a) yes (b) Probably (c) Although the air and walls emit more radiation altogether, only a

small fraction of that hits the rock. 3. (a) It decreases, because the system does work, rather

than having work done on it. (b) As the system contracts, the potential energy of each

particle decreases. (That is why it contracts. The particles are seeking the configuration of

lower potential energy.) Like a ball rolling downhill, each particle’s average kinetic (hence

thermal) energy increases as the potential well deepens. 5. (a) 120 J (b) 796 K 7. u0 is

negative, because thermal energy is released when the H2SO4 molecule enters the solution.

The change in chemical potential is negative, because the molecules go into solution rather

than out of solution. They go in the direction that lowers their chemical potential. 9. (a) The

temperature would fall because the same thermal energy would be distributed over more

degrees of freedom, meaning less thermal energy per degree of freedom. (b) The

temperature would fall because the gain in potential energy leaves less energy to be

distributed among the thermal degrees of freedom. 11. 15600J/mol 13. 10700J/mol

15. 1.6 × 109 K 17. ν = 18.1 19. (a) In liquid water the molecules are closer together.

Their mutually attractive forces are stronger, and therefore the potential well is deeper at these

closer distances. (b) In ice, the reduced thermal motion of the molecules allows them to

orient and space themselves in a way that lowers their potential energy. (c) Compared with

the molecules of oil, the water molecule is much more highly polarized, leading to a stronger

electrostatic attraction between the charged parts of the water molecule and the charged salt

ions. 21. (a) 20.3 J (b) 4.9 cal (c) u0 rises. (Less thermal energy but the same total
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internal energy.) 23. (a) 1.52 × 105 J (b) �T = −22 K 25. (a) exact (b) exact

(c) inexact (d) exact (e) exact 27. (1) 47 (2) 47, yes 29. (a) pi (V f − Vi )

(b) p f (V f − Vi ) (c) yes 31. (a) 142 (b) 142 (c) 142 33. (a) 2w/y3 (b) 3
2

√
yz

(c) 1
2

√
z/y (d) 2/3 3

√
wz 35. y(z + 1) 37. s/2

√
t − sest

Chapter 6

1. (a) 101.8×1023
(b) 104.3×1021

(c) 104.3×1020
3. (a) 10 (b) 1012 (c) 10900 (d) 10900

(e) 1099×1022
5. (a) +++, ++−, + − +, − ++, +− − , − + − , − − +, − − −

(b) 3/8 (c) 2/8 7. (a) 1.3 × 10−24 (b) 0.30 (c) 0.48 9. (a) 2.9 × 10−25 eV (b) 11.4

× 10−25 eV (c) 8.6 × 10−25 eV 11. (a) hh, ht, th, tt (b) hhh, hht, hth, thh, htt, tht, tth, ttt

(c) hhhh, hhht, hhth, hthh, thhh, hhtt, htht, htth, thht, thth, tthh, httt, thtt, ttht, ttth, tttt (d) yes

13. (a) 64 (b) 7 15. (a) 1.1 × 109 (b) 3.5 × 109 (c) 3.7 × 1018 17. (a) 20, 10 (b)

9900, 4950 (c) 9.7 × 105, 1.6 × 105 (c) 1.0 × 109 1.7 × 108 19. (a) Macroscopic (b)

4.6 × 1026 21. (a) 8.4 × 1024 (b) 1.26 (c) 101.9×1024
23. (a) 3.0 × 107 J (b)

4.64 × 10−67(kg m/s)3 (c) 2.0 × 1035 (d) 1.82 × 108 (e) 102.48×1028

(f) ωc(N2) = 2.29 × 108, ωc(O2) = 8.63 × 108, � = 102.54×1028
25. When it melts, the

volume in coordinate space accessible to each molecule increases immensely, because the

molecules become mobile and can move throughout the fluid. This volume is much larger and

affords access to many more states than did the much more restricted volume that was

represented in the three potential-energy degrees of freedom of the solid state.

Chapter 7

1. (a) Set d f/dE = 0 for each, which gives E = 5n/(n + m), where n is the first exponent

and m the second. For all three cases the ratio n/(n + m) is 0.4, giving E = 2.

(b) f (2)/ f (1) = 1.7, 187, 102.27×1022
; f (2)/ f (3) = 1.5, 58, 101.76×1022

.

3. (a) (E1, E2, �1, �2, �0) = (0, 4, 0, 16, 0), (1, 3, 1, 9, 9), (2, 2, 2.8, 4, 11.3), (3, 1, 5.2,

1, 5.2), (4, 0, 8, 0, 0), total = 25.5. (b) 0.20 (c) (2, 2), 0.44 5. (a) (E1, E2, �1, �2, �0)=(0,

6, 0, 216, 0), (1, 5, 1, 125, 125), (2, 4, 4, 64, 256), (3, 3, 9, 27, 243), (4, 2, 16, 8, 128), (5, 1,

25, 1, 25),(6, 0, 36, 0, 0), total=777 (b) (2, 4), 0.33 7. (a) (E1, E2, E3, �1, �2, �3, �0)

= (4, 0, 0, 16, 0, 0, 0), (3, 1, 0, 9, 1, 0, 0), (3, 0, 1, 9, 0, 1, 0), (2, 2, 0, 4, 5.7, 0, 0), (2, 1, 1,

4, 1, 1, 4), (2, 0, 2, 4, 0, 8, 0), (1, 3, 0, 1, 15.6, 0, 0), (1, 2, 1, 1, 5.7, 1, 5.7), (1, 1, 2, 1, 1, 8, 8),

(1, 0, 3, 1, 0, 27, 0), (0, 4, 0, 0, 32, 0, 0), (0, 3, 1, 0, 15.6, 1, 0), (0, 2, 2, 0, 5.7, 8, 0), (0, 1, 3,

0, 1, 27, 0), (0, 0, 4, 0, 0, 64, 0), total = 17.7 (b) (1, 1, 2), 0.45 9. All accessible states

have to be equally probable in order for the probability for any particular configuration to be

proportional to the number of states corresponding to that configuration. 11. (a) 10

(b) 101023
(c) 1099×1023

13. 102.000 000 000 000 000 000 09×1020
15. (a) (E1, E2, �1, �2, �0) =

(0, 5, 0, exp(6.99 × 1024), 0), (1, 4, 1, exp (6.02 × 1024), exp (6.02 ×
1024)), (2, 3, exp (3.61 × 1024), exp (4.77 × 1024), exp (8.38 × 1024)), (3, 2, exp (5.73 ×
1024), exp (3.01 × 1024), exp (8.74 × 1024)), (4, 1, exp (7.22 × 1024), 1, exp (7.22 ×
1024)), (5, 0, exp (8.39 × 1024), 0, 0) 17. 10−3.62×1014

19. (E1, E2, �1, �2, �0) =
(0, 4, 0, exp (3.61 × 1024), 0), (1, 3, 1, exp (2.86 × 1024), exp (2.86 × 1024)),

(2, 2, exp (0.60 × 1024), exp (1.81 × 1024), exp (2.41 × 1024)), (3, 1, exp (0.95 ×
1024), 1, exp (0.95 × 1024)), (4, 0, exp (1.20 × 1024), 0, 0), total = exp (2.86 × 1024)

(b) 10−4.5×1023
, or one chance in 104.5×1023

21. 10216 976 23. (a) At the peak, the
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distribution has a maximum, so its derivative is zero. (b) Because each degree of freedom

carries on average the same energy the total energy E0 is apportioned in proportion to the

number of degrees of freedom. (c) The second derivative gives −n1/E1
2 − n2/E2

2, which

you can manipulate using n1/E1 = n2/E2 = n0/E0. (d) Substitute the results for the first

and second derivatives into equation 7.5 and exponentiate it. 27. Heat flowing from cold to

hot, fluids flowing from lower pressure to higher pressure, particles going from regions of low

concentration to high concentration, friction speeding things up and cooling them off, etc. In

short, for such processes energy is conserved but flows the wrong way. 29. 8 (b) 0.96

× 10−23 J/K, 1.91 × 10−23 J/K (c) 2.87 × 10−23 J/K 31. (a) 105×1024
(b) 63.6 J/K, 95.4

J/K (c) 159.0 J/K 33. (a) 101.30×1022
(b) �S = k ln(�f/�i) = 0.41 J/K 35. (a) 16 J

(b) 1151 J/K, 3499 J/K, 4650 J/K 37. (a) 6.21 × 105 J (b) 102.2×1023
(c) 6.9 J/K

39. There is a greater volume in momentum space. (For molecules with the same kinetic

energy, the ones with the larger mass have the greater momentum.)

Chapter 8

1. (a) 3N/2 (b) Write S = k ln � with � = C E3N/2 and use this in equation 8.2 for 1/T .

(c) Use S = k ln � and equation 8.2 to get E = αNνkT . 3. (a) 20, 16 (b)

E1 = 5.56 × 10−19 J, E2 = 4.44 × 10−19 J (c) 2.7 × 10−21 J/K (d) 4020 K 5. 3.77 ×
10−23 J/K, 137 K 7. (a) 0.079 J/K (b) 102.49×1021

9. (a) +3.67 × 10−3 J/K (b) −3.53 ×
10−3 J/K (c) +0.14 × 10−3 J/K 11. (a) Use p/T = (∂S/∂V )E,N , where S = k ln �, to get

pV = NkT . (b) R = NAk 13. Use 1/T = (∂S/∂ E)V,N , where S = k ln �, to get

(a) E = NkT (b) E = 2NkT (c) E = 3NkT 15. (a) �0 = CV N1
1 (V0 − V1)N2 (b) dS0 =

0 = dS1 + dS2 = (∂S1/∂V1 − ∂S2/∂V2)dV1 (c) p1/T1 = p2/T2 17. 250 J/K

19. (a) About 107 to 108 J, depending on the room’s size (b) 660 J (c) 60 J (d) 2.8 × 1026 J

21. (a) 3.2 × 10−3 J/K (b)314 K 23. 1/T, 1/p 25. (a) 3.3 × 10−3 J/K (b) 101.05×1020

27. (a) 3.57 × 10−4 J/K (b) 3.57 × 10−4 J/K (c) 101.1×1019
for each 29. (a) 3.38 ×

10−7 J/K (b) 101.06×1016
(c) 3.48 × 10−8 J/K, 101.1×1015

31. 9.6 × 10−24 J/K 33. (a) 0

(b) Although there is greater room in momentum space, there is correspondingly less room in

coordinate space, due to the smaller volume. 35. −0.25 eV 37. (a) 3.4 J/K (b) 0.10 J/K

(c) 0.71 J/K (d) 1.4 J/K 39. cp would be larger. If the system is held at constant pressure

and allowed to expand, the expansion would cause some cooling, resulting in a smaller net rise

in temperature as heat is added. A smaller rise in temperature means a larger heat capacity.

41. (a) For a mole, Nk = R. Write the first law as dE = dQ − pdV = (ν/2)RdT . Then look

at dQ/dT for dV = 0 (cV ) and for pdV = RdT (cp). 43. (a) 7.26 J/K (b) 102.3×1023

45. (a) 13 700 J (b) The heat released goes to some other system whose entropy increases as

a result of the heat transfer. The total entropy of the combined system rises. 47. +0.376 eV

(b) 0.136 J/K 49. 8730 J/K

Chapter 9

1. (a) 1 (b) 1 3. Perhaps some manifestation of heat flowing from cold to hot, or something

moving in the opposite direction to the net applied force, particles diffusing from low

chemical potential to high chemical potential. 5. (a) (0, 0) (b) 0 (c) 0 (d) negative

(e) negative 7. Carry out the derivation from equation 9.4 to equation 9.6, with the

constraint that dS0 > 0. 9. The condition 9.3a applies to systems interacting thermally only,
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which precludes particles entering or leaving (i.e. diffusive interactions). 11. µcrystal

< µamorphous 13. Mix in some water and shake it. The sugar moves from the oil to the

water, where its chemical potential is lower. Let it stand, so that the water separates, and then

remove the water. If you want to recover the sugar, evaporate the water. 17. No, because the

condition is for purely thermal interactions. The volume of melting ice is changing, so it is

engaging in mechanical interactions as well. If the volume were held constant, the pressure

would fall and the freezing point would rise (�T > 0) as heat was added (�Q > 0) to melt

the ice. The condition would be met. 19. You must explain how to measure �T and �Q for

thermal interactions, �p and �V for mechanical interactions, or �µ and �N for diffusive

interactions. (�µ will probably be the most difficult, unless you are using voltmeters for the

diffusion of charged particles.) 21. (a) 2.04 × 10−19 J (b) 41.7 K, 0.288 × 10−19 J

(c) 0.141 for both 23. (a) 3780 J (b) 3.78 × 10−9 J (c) 1.0 × 10−12 25. 2.25 µm

27. (a) 3.35 × 1010 (b) 3.2 × 10−6 29. (a) 6.1 × 10−3 (b) 6.1 × 10−12 33. (a) You could

seal the oven and use the air pressure as a measure of its temperature. (b) Yes. You wouldn’t

be able to get food in or out without breaking the pressure seal. 35. (a) 46 ◦C (b) −281 ◦C

39. Whatever the values of TS and pV for the system, these values could be have been obtained

in an infinite number of different ways, with different heat transfers and different amounts of

work. For example, imagine starting with a system in a canister at fixed volume near absolute

zero, where the pressure is nearly zero (pV ≈ 0). Then simply add heat until the pressure

rises to some arbitrary value. This value of pV was obtained without any work at all having

been done. Similarly, you could get any value of TS through volume changes without any heat

at all having been added. 41. Take the differential and subtract dE = T dS − pdV + µdN .

43. In each case, write out the full derivative of the appropriate function in equation 9.14′ (e.g.,

dF = −pdV − V dp + µdN + Ndµ) and then substitute −SdT + V dp for Ndµ. 45. Just

carry out the steps for these proofs that are outlined in subsections F.2, F.3, and F.4. 47. dH =
T dS + V dp + µdN ; dH = T dS = heat added only if dp = dN = 0. 49. For the two

interacting systems, �G0 = �G1 + �G2 = (µ1 − µ2)�N , since �T = �p = 0. Make A2

a reservoir, so that µ2 is constant. Write µ1 = µ1 + �µ/2. To first order �G0 = 0, because

µ1 = µ2 in equilibrium. To second order �G0 = �µ�N/2, and this term must be positive

according to the result 9.3c. If first order terms are zero and second order terms are positive

then the function is a minimum. 51. Each has the form dw = f dx + gdy + hdz, so you

will get the relations corresponding to (∂ f/∂y)x,z = (∂g/∂x)y,z, (∂ f/∂z)x,y =
(∂h/∂x)y,z, (∂g/∂z)x,y = (∂h/∂y)x,z . 53. (a) Add �N particles. To ensure that T and p

retain their original values, two quantities must be adjusted, such as �V and �Q, until the

two are at their original values. Then the net change in volume �V is recorded. (b) Add heat

(�S = �Q/T ) to a system of fixed number of particles adjust the volume (�V ) so that the

pressure returns to its original value. (c) Add heat to a system of a fixed number of particles

kept at constant volume. Record both �p and �T . 55. Solve ωc = (eV/N )(4/3)πp3

h3 for p,

with ωc = 1 and the given V/N . KE = p2/2m. (a) 6.4 eV (b) 0.30 MeV

Chapter 10

1. Four 3. (a) 1/T = CV 2/E or E = CV 2T (b) p/T = 2CV ln E (c) E =
CV 2T, (∂ E/∂V )T = 2CV T = 2E/V (d) p = (2x/V )ex , where x = S/CV 2;

∂p/∂V )S = (−2x/V 2)(3 + 2x)ex 5. E = (ν/2)pV, (∂ E/∂p)V,N = (ν/2)V 9. (a) Two

(b) 2N (c) 41.4 J (d) � = (C AE/N 2)N (e) S = Nk ln(C AE/N 2) 11. (a) S = k ln C +
bkV 4/5 + 2Nk ln E (b) E = 2NkT (c) 4N (d) pV 1/5 = (4/5)bkT 13. (a) N/2



Problem solutions 543

(b) Flux = density × velocity = number per area per second. So density × velocity × area =
number per second = (N/2V )vx A (c) 2mvx (d) Force = �p/�t = number per second ×
impulse per particle = (N/2V )vx A(2mvx ) (e) Divide the force by the area:

p = (N/V )mv2
x (f) Use the average value of (1/2)mv2

x = (1/2)kT 15. µ = kT [(ν +
2)/2 − ln ωc] = (E + pV − T S)/N 17. Obtain S = k ln C + kaV 1/2 + kbV ln E , and use

then equations 8.10. (a) T = E/(kbV ) (b) p = kT [(a/2V 1/2) + b ln E] 19. H = E +
pV = (6/2)RT + RT = 25 700 J 21. 28.97 g, 28.64 g 23. (a) ωc = 3.8 × 106,

S = 126 J/(mole K) (b) ωc = 1.3 × 1011, S = 213 J/(mole K) (c) ωc = 250, S =
45.9 J/(mole K) 25. (a) �H = 7540 J/mole, �S = 23.5 J/(mole K), �E = 7540 J/mole

(b) �H = 4.07 × 104 J/mole, �S = 109 J/(mole K), �E = 3.76 × 104 J/mole (c) �H =
3570 J/mole, �S = 8.5 J/(mole K), �E = 2740 J/mole 27. (a) 3.1 × 10−10 m (b) 33 ×
10−10 m (c)11 29. Since the repulsive potential energy would be proportional to

1/r ≈ v−1/3, and work = ∫
pdv , we would expect an added pressure term ≈ v−4/3, giving

(p + a/v2 − c/v4/3)(v − b) = RT 31. water, v = 0.018 l = 0.6 b; ethyl alcohol,

v = 0.058 l = 0.7b 33. (a) From p/T = (∂S/∂V )E,N get S = (AV/T )[1 + B(1 −
V/2V0)] + f (E, N ) (or other equivalent forms) where f is any constant or function of E and

N. (b) � = eS/k , where S is given in part (a). 35. x ′
i = √

κiκ1 xi (b) mi = √
κ1κi m

37. −4.7 eV 39. (a) 2.04 × 10−21 J (b) k = 82 N/m (c) f = 6.8 × 1012 Hz

41. C p − Cv = p(∂v/∂T )p + NA[(∂u0/∂T )p − ∂(u0/∂T )V ] 43. (a) Polyatomic (b) eight

45. (a) dV = (1/a)[−(2/p)dp + (1/3T )dT ] (b) κ = 2/apV (c) β = 1/3aV T 47. 0

(b) −p/V (c) −γ p/V 49. You should first obtain the differential form,

V 2dp + (2pV − aT )dV − (aV + b)dT = 0, from which you can then read off the answers

to parts (a) and (b): (a) β = (a+b/V )
2pV −aT , (b) κ = V

2pV −aT . 51. (a) p = 83.5 atm (b) β =
2.1 × 10−3/K 53. Differential form is Cdp + Ddv = RdT , with C = eBv v, D =
eBv (p + pv B + AB). (a) β = R/v D (b) κ = C/v D (c) cp − cV = pR/D

Chapter 11

1. Definition of Cp 3. (∂S/∂p)T = −(∂V/∂T )p = −Vβ 5. LHS =
(∂S/∂p)T (∂p/∂V )T = (∂S/∂p)T /(∂V/∂p)T = (−Vβ)/(−V κ) = β/κ 7.

LHS = (∂T/∂p)S (∂V/∂S)p = (∂V/∂T )p/(∂S/∂T )p = Vβ/(Cp/T ) 9.

LHS = −(∂p/∂S)V = −1/(answer to problem 4) 11.

LHS = −(∂S/∂V )p/(∂S/∂p)V = −(Cp/T Vβ)/(κCV /βT ) 13. dV =
(∂V/∂p)T dp + (V/∂T )pdT = −V κdp + VβdT 15. dE = T (∂S/∂T )V dT +
[T (∂S/∂V )T − p]dV = CV dT + (Tβ/κ − p)dV 17. dE = T (∂S/∂p)V dp +
[T (∂S/∂V )p − p]dV = (CV κ/β)dp + [(Cp/Vβ) − p]dV 19. dT = (∂T/∂p)V dp +
(∂T/∂V )pdV = (κ/β)dp + (1/Vβ)dV 21. dE = [T − p(∂V/∂S)p]dS − p(∂V/∂p)Sdp,

solve for dS: dS = (1/A)dE − (pVCV κ/Cp A)dp, with A = T (1 − pVβ/Cp).

23. (a) dN = dV = 0 (b) dS = (∂S/∂T )V dT (c) dS = (CV /T )dT 25. (a) 1 (b) dS =
(∂S/∂ N )T,pdN (c) dS = −(∂µ/∂T )p,N dN 27. β = 4.0 × 10−5/K (Ignore the smaller

terms of order �T 2 and �T 3.) 29. (a) Hold the gas in the cylinder at constant volume. Add

heat �Q and measure the temperature change, �T CV = (�Q/�T )V. (b) Put the liquid in

the cylinder and let the volume change to keep the pressure constant as you add �Q and

measure �T . Cp = (�Q/�T )p . (c) Put a volume V of the liquid in the cylinder and

measure the change in volume �V as you change the pressure by �p. You will have to add or

remove heat to keep the temperature constant as you do this; then κ = (1/V )(�V/�p)T .

(d) Immerse the solid in the liquid in the cylinder, and measure Vtotal and �Vtotal as above. To



544 Problem solutions

get Vs and �Vs for the solid alone, you have to subtract those of the liquid, determined as

above. (Vs = Vtotal − Vw, �Vs = �Vtotal − �Vw) κ = (1/V )(�V/�p)T . 31. dE = T dS −
pdV = T (∂S/∂T )V dT + [T (∂S/∂V )T − p]dV = CV dT + (Tβ/κ − p)dV . 33. (a) 0.019

(b) 13 35. Write �S = (∂S/∂p)V �p + (∂S/∂V )p�V and then use Table 11.1 to convert

the two partials into Cp, CV , κ, β, T, p, V as appropriate. 37. Use ∂2 S/∂p∂T =
∂2 S/∂T ∂p and Maxwell’s relation M10 for ∂S/∂p)T . 39. (b) 4.9 × 106 Pa, 4.2 × 105 Pa

41. (a) V = NkT/p, so (∂V/∂T )p = Nk/p and (∂2V/∂T 2)p = 0. (b) From the van der

Waals equation, Avdp + Bpdv = RdT , where A = 1 − b/v and B = 1 − a/pv2+2ab/pv3,

we get (∂v/∂T )p = R/pB. The second derivative is (∂2v/∂T 2)p = −(R/pB2)(∂ B/∂T )p ,

where (∂ B/∂T )p = (2a/pv3)(1 − 3b/v)(∂v/∂T )p , and this last derivative is given above

(R/pB). 43. �E = T (∂S/∂T )M�T + [T (∂S/∂ M)T + B]�M

Chapter 12

1. (a) dS = (Cp/T Vβ)dV (b) dS = (Cp/T )dT 3. dV = VβdT 5. (a) dH =
(Cp/Vβ)dV (b) dF = −(S/Vβ + p)dV (c) dG = −(S/Vβ)dV 7. (a) dE =
(C p/Vβ − p)dV + [T (∂S/∂ N )p,V + µ]dN (b) dE = [T (∂S/∂µ)p,N −
p(∂V/∂µ)p,N ]dµ + [T (∂S/∂ N )p,µ − p(∂V/∂ N )p,µ + µ]dN 9. (a) dE = (Tβ/κ − p)dV

(b) dE = (−T Vβ + pV κ)dp 11. (a) dH = (−T Vβ + V )dp (b) dF = pV κdp

(c) dG = V dp 13. For an ideal gas, β = 1/T, κ = 1/p. 15. (a) 530 K (b) 800 K

(c) 61 atm 17. (a) Use pV = NkT to eliminate the volume V, and integrate. (b) 5.5

km 19. Nine 21. (a) Start with the rearranged first law, dQ = dE + pdV , with E =
(Nν/2)kT and use the definitions CV = (∂ Q/∂T )V and Cp = (∂ Q/∂T )p .

(b) �(E + pV ) = �[(ν/2)NkT + NkT ] = [(ν + 2)/2]Nk�T = Cp�T 23. (a) 507 J,

410 J, 379 J (b) 1770 J, 410 J, 0 J (c) 1260 J, 0 J, −379 J (d) 1770 J, 0 J, −531 J

25. (a) dE = (pVCV κ/Cp)dp (b) dE = −pdV (c) dE = (pCV κ/Tβ)dT 27. (a) 1.01 ×
104 Pa (b) Use �T/T = (vβ/C)�p and get �Tadiabatic = 1.4 × 10−4 K/m, which is greater

than the lapse rate, so it is stable. 29. As moist air rises and cools adiabatically, some of the

moisture condenses, releasing latent heat. Consequently, rising moist air cools less rapidly

with altitude than rising dry air. If the lapse rate falls between these two then the moist air will

continue to rise whereas the dry air will not. 31. V = 0.226 liters, T = 531 K,

work = 205 J. 33. Yes 35. While moving, a part of the motions of all the molecules is

coherent -- they are all moving the same direction together. Friction turns this coherent motion

into random thermal motion. To go back, this random thermal motion would have to turn back

into synchronized coherent motion -- all molecules going in the same direction together. This

is very unlikely, i.e., it is a state of very low entropy, like the state that would occur if you

flipped 1024 coins and they all landed heads. 37. −0.32 ◦C 39. (a) 324 K (b) 3.92 ×
10−3/K (c) 0.23 ◦C/atm 41. Tf − Ti = (2a/νR)(1/v f − 1/vi ) 43. (a) �E = �Q =
�W = 0 (b) �E = −�W = −[NkTi/(γ − 1)][1 − (Vi/V f )γ−1], with γ = (ν + 2)/ν,

�Q = 0 (c) �E = 0, �Q = �W = NkTi ln(Vf/Vi) 45. 256 (b) 25 (c) 9 47. Series:

�T = �T1 + �T2 + · · · = R1Q̇ + R2Q̇ + · · · = (R1 + R2 + · · ·) Q̇ = Rtot Q̇. Parallel: Q̇ =
Q̇1 + Q̇2 + · · · = 1

R1
�T + 1

R2
�T + · · · =

(
1

R1
+ 1

R2
+ · · ·

)
�T = 1

Rtot
�T . 49. (a) Rw =

3.5 × 10−2 K/W (b) Ri = 9.5 × 10−2 K/W (c) Rs = 21.6 × 10−2 K/W (d) Rtotal = 2.30 ×
10−2 K/W (e) 6.9 × 109 J (f) Electricity, $286; gas, $95. 51. Take the second derivative

with respect to x, and compare it with 1/K times the first derivative with respect to t. Then use
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the fact that the Gaussian factor at t = 0 is an infinitely narrow spike beneath which the area is

unity to show that T (x, t = 0) = f (x).

Chapter 13

1. (a) �Q = [(ν + 2)/2](n RTi/Vi)(Vf − Vi), �W = (n RTi/Vi)(Vf − Vi). (b) �Q = �W =
n RTi ln(Vf/Vi) (c) �Q = 0, �W = (νn RTi/2)[1 − (Vi/Vf)2/ν ], [(γ − 1) = 2/ν] 3. 1730 J

5. The diagram will have −F on the vertical axis and L on the horizontal axis.

(1) Constant-length heat addition: straight up: (2) Adiabatic contraction: down and to the

left. (3) Constant-length heat removal: straight down. (4) Adiabatic extension: up to the

right. 7. (a) p2, V1; p2(V1/V3)γ , V3; p1(V1/V3)γ , V3; p1, V1. (b) �Q =
(p2 − p1)V1/(γ − 1), �W = 0; �Q = 0, �W = [p2V1/(γ − 1)][1 − (V1/V3)γ−1]; �Q =
(p1 − p2)(V1/V3)γ V3/(γ − 1), �W = 0; �Q = 0, �W = [p1V1/(γ − 1)]

[(V1/V3)γ−1 − 1]. 9. They will look like the diagrams on the right in Figure 13.5.

11. (a) Straight across, slope down, straight down, slope up to the left. (Adiabatic curve is

steeper than isothermal curve, and both are concave upward.) (b) Slope up, straight across,

slope down to the left, straight up. (Isochoric is steeper than isobaric, and both are concave

upward.) (c) (�Q, �W, �E) = + + +(1), + + 0(2), − 0 − (3), 0 − +(4). 13. (a) Slope

down, slope down, straight to the left, straight up. (Adiabatic is steeper than isothermal, and

both are concave upward.) (b) Straight across, straight down, slope down to the left, slope up

to the right. (Isochoric is steeper than isobaric, and both are concave upward.)

(c) (�Q, �W, �E) = + + 0 (1), 0 + − (2),− − − (3), + 0 + (4). 15. (a) 6 ◦C (b) 600

kg/s 17. The gas turbine’s hot reservoir is slightly hotter than the coil, because heat is

flowing from the reservoir to the coil; vice versa for the refrigerator. 19. (a) 2T/νR

(b) 2T/(ν + 2)R (c) 0 (d) The isochoric and isobaric cases curve upward, because they

slope upward and the slope increases with increasing T. 21. (a) �Q = �W = ∫pdV , with

p = n RT/V (b) �S = �Q/T (constant T ) (c) Replace V2/V1 by p1/p2, because

V = constant/p. 23. (a) �W = n RT ln(Vf/Vi) = piVi ln(Vf/Vi) (b) pf = pi(Vi/Vf)

25. (a) �W = p1V1{ln(V2/V1) + (5/2)[1 − (V2/V3)2/5]} (b) p3 = (p1V1/V2)(V2/V3)7/5

27. 2.5 J (b) 21 J 29. (a) 1020 J (b) 582 J (c) 873 J (d) 436 J (e) 0.43

31. (a) �Q = �W = 161 J (b) �Q = 1400 J, �W = 400 J (c) �Q = 0, �W = 119 J

33. (a) �Q = 0, �W = (5/2)R(T1 − T2); �Q = �W = (5/2)RT2 ln(T2/T1); �Q =
(5/2)R(T1 − T2), �W = 0 (b) �Q = 0, �W = (5/2)R(T1 − T2); �Q =
(7/2)RT2[(T2/T1)5/2 − 1], �W = RT2[(T2/T1)5/2 − 1]; �Q = (5/2)RT1[1 − (T2/T1)7/2],

�W = 0 35. (a) In units of p0V0, (�Q, �W, �E) = (7/2, 1, 5/2), (ln 2, ln 2, 0),

(0, 5/2, −5/2). (b) In units of p0V0/n R, T = 2, 1, 0.76. 37. Start with H = E + pV and

then take the differential form with dQ = 0, so that dH = V dp. Then integrate using pV γ =
constant. 39. (a) (p(105 Pa), V (10−3 m3), T (K)) = (2, 2, 600), (1.13, 3, 510),

(2.26, 1.5, 510), (4, 1, 600) (b) (�Q, �W, �E) (in joules) = (277, 277, 0), (0, 150, −150),

(−236, −236, 0), (0, −150, 150) (c) 0.15 41. If �Q were to flow from cold to hot then

�S = �Q/Th − �Q/Tc = [�Q/(ThTc)](Tc − Th) < 0, violating the second law.

43. Suppose that on your p--V diagram you have isothermal expansion from V1 to V2,

adiabatic expansion from V2 to V3, isothermal compression from V3 to V4, and adiabatic

compression from V4 to V1. Then from the two isothermal parts you should be able to show

that Qh/Th = n R ln(V2/V1) and Qc/Tc = n R ln(V3/V4). From the two adiabatic lines you

should get ThV γ

2 = TcV γ

3 and ThV γ

1 = TcV γ

4 , from which V2/V1 = V3/V4; plug this into
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your isothermal results. 45. (a) 0.48 (b) 0.44 47. Gasoline burns fast, so that the piston

doesn’t move much (and therefore, the volume doesn’t change much) during the combustion.

In turbine engines, the heat is added while the fluid is in an open tube in the heat exchanger, so

the pressure is the same from one end of the tube to the other.

49. (a) p1, V2, p1V2/n R; p1(V1/V2)7/2, V1(V2/V1)7/2, p1V1/n R; p1, V1, p1V1/n R.

(b) �Q = (7/2)p1(V2 − V1), �W = p1(V2 − V1), �E = (5/2)p1(V2 − V1); �Q =
0, �W = −�E = (5/2)p1(V2 − V1); �Q = �W = (7/2)p1V1 ln(V1/V2), �E = 0.

51. (a) 750 K, 2.5 × 106 Pa (b) 1500 K (c) 0.8 53. The line slopes steeply downward

until it reaches the mixed phase, is horizontal across the mixed phase, and then slopes more

gently downward in the gas phase. 55. (a) 2.9 × 1024 J (b) 2.8 × 1020 J (c) 0.01%

(d) 0.1% (e) 7% (f) 0.7%

Chapter 14

1. (a) 0.096 eV (b) −0.294 eV (c) −0.372 eV (d) −0.390 eV (e) −0.443 eV (f) 1.4 J goes into

thermal energy, 2.8 J into u0. 3. Liquid water’s chemical potential falls faster, because

above 0 ◦C the molecules prefer the liquid phase so it must have the lower chemical

potential. 5. (�1, �2, �2/�1) = (a) (2, 3, 1.5) (b) (3, 6, 2) (c) (3, 4, 1.33) (d) (6, 10,

1.67) (e) (10, 20, 2) (f) Yes (g) Yes 7. S = k ln � = Nk ln ωc. So if you multiply your

answers by k then you should find that ∂S/∂ E = Nνk/2E = 1/T, ∂S/∂V = Nk/V = p/T ,

and ∂S/∂ N = k[ln ωc − (ν + 2)/2]. If you also multiply your answers by T, you should get

T �S = �E + p�V − µ�N , where µ = kT [(ν + 2)/2 − ln ωc] = ε + pε − kT ln ωc, as in

equation 14.2. 9. Vp = 2.9 × 10−68 (kg m/s)3, eV/N = 8.1 × 10−29 m3; ωc =
(e/N)(Vr Vp/h3) = 8000 11. (a) �E = +60.2 eV, �W = −0.013 eV, µ�N = +400 eV,

�Q = �E + �W − µ�N = −339.8 eV (b) �E = −60.2 eV, �W = +0.013 eV,

µ�N = −720 eV, �Q = �E + �W − µ�N = +659.8 eV (c) 219.8 eV (d) Use

µ = −kT ln ωc + ε̄ and solve for ωc; ωc,A = 1470 and ωc,B = 40. 13. 2.7g/m3 15. (a)

1.66 × 10−29 m3, 2.44 × 10−29 m3, 9.67 × 10−29 m3, 2.99 × 10−29 m3 (b) 1.05 × 10−5 eV,

1.54 × 10−5 eV, 6.12 × 10−5 eV, 1.89 × 10−5 eV (c) 2420, 1650, 416, 1350

17. (a) −0.505 eV (b) 16 (from 14.5′). 19. 0.338 eV 21. 2.02 × 103 Pa, −40 Pa

23. 4.9 × 106 Pa (48 atm) 25. (a) 105 Pa, or about 1 atm (b) Toward the hot side

(c) Somewhere around 200 000 to 1 000 000 K 27. No; µA + µB < µC . So to minimize G,

the system stays as A + B rather than going to C. 29. To the right, because

2µD + 3µE < 3µA + µB + 4µC 31. (a) 189 J/(mole K) (b) 1.959 × 10−3 eV/K,

1.965 × 10−3 eV/K (c) �µ (= −σ�T ) = −3.92 × 10−3 eV 33. (a) ρ(H+) =
10−7mole/liter (b) 7 (c) 6.51 35. (a) Use equation 14.4, ε = u0 + (3/2)kT , and

pε = kT . (b) [(2πmkT )3/2/h3]e−u0/kT 37. The line separating the solid and liquid phases

should be vertical. Pressure favors neither phase, so increased pressure has no effect on the

temperature of the phase transition. 39. Tc, is higher for water. The self-attraction is

stronger for the water molecules, so larger thermal energies are required to oppose the

tendency for molecules to stick together and condense into a liquid. 41. (a) 3.6 atm (b) 16

atm (c) 97 atm (d) 0.082 atm (e) 0.0082 atm (f) 36% error. We assumed L to be a

constant, independent of the temperature. 43. (a) vsol = 7.154 × 10−6 m3,

vliq = 7.904 × 10−6 m3 (b) �v = +0.750 × 10−6 m3 (c) The pressure would have to

increase. (d) 7.6 × 108 Pa (Integrate equation 14.15, dp = (L/�v)dT/T .) 45. −5 ◦C

47. pT −B/ReA/RT = constant. 49. (a) More volume in position space means more
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accessible states -- hence increased entropy. During adiabatic expansion, the system cools, so

that although the volume in position space increases, that in momentum space decreases, the

net change in accessible states being zero. 51. (b) Show that the second derivative of

−T �Sm is positive for all f. 53. Thermal energy is released when the particles fall into

deeper potential wells. So the attraction between unlike particles must be stronger than that

between like particles.

Chapter 15

1. (a) SR = S0 − (�E + p�V − µ�N )/T (b) eSR/k , with SR from part (a) (c) P =
Ce−(�E+p�V −µ�N )/kT 3. 3.2 × 1010 Pa = 3.2 × 105 atm 5. (a) �E = +10.2eV,

p�V = 2.5 × 10−5 eV (b) 4.2 × 1010 Pa = 4.1 × 105 atm 7. (a) 0.371 (b) 0.371

(c) 0.233 9. (a) 0.798 (b) 0.798 (c) 0.161 11. (a) 4.635 (b) 0.990 (c) 0.990

(d) 9.3 × 10−5 13. (a) 0.765 (b) 0.235 15. 10.2 times 17. (a) 1010 K (b) 2320

K 19. 11 600 K 21. 348 K 23. (a) 4.56 × 10−3 (b) 0.332, 0.333, 0.335

(c) 2.84 × 10−26 J/T (d) 0.017 J/T 25. (a) 0.368 (b) 0.288 27. (a) 0.08006 eV

(b) 0.043 29. dV = 0, so dQ/dT = dE/dT with E = (NAν/2)kT . 31. (a) 1.16 ×
10−48 kg m2 (b) 0.0599 eV (c) 694 K 33. (a) 2320 K (b) 8.1 K (c) 3R 35. 0.24 K

37. E/N = (
∑

e−εi /kT εi ]/(
∑

e−εi /kT ). 39. (a) 0.772 (b) 0.076 (c) 0.228 41. 3 × 10−7

43. (a) gl(ε) = nl/(b − a), gu(ε) = nu/(d − c) (b) [(b − a)/(d − c)](nu/nl )(e−βc − e−βd )/

(e−βa − e−βb) (c) (nu/nl)e−β(c−a) (d) [(b − a)/(d − c)](nu/nl )e−β(c−a) 45. (a) 3

(b) 3.8 × 10−2 eV = 6.1 × 10−21 J (c) 508 m/s (d) 1920 m/s 49. 2.8 × 10−5m/s

51. (a) 4.07 × 10−21 J (b) 2.0 × 10−11 radians or 4.1 × 10−11 m

Chapter 16

1. 0.006 3. (a) 0.01 (b) 0.81 5. Use equation E.1 with α = βm/2. 7. With

d3v = v2dv sin θ dθdφ, integrate over the angles to get 4π and then use equation E.2 for the

integral over v (from 0 to ∞) with n = 1, α = βm/2. 9. (a) 0.39 (b) 0.11 (c) 7.4 × 10−3

11. (a) 0 (b) 470 m/s (c) 510 m/s (d) 416 m/s 13. 1.45 15. Use equation E.4 with

n = 0. 17. (a) 3.11 × 1021 particles/s (b) 2.88 × 10−6/s (c) N = N0e−Ct ,

N0 = 1.08 × 1027, C = 2.88 × 10−6/s (d) 67 hours 19. 122 s 21. (a) 20 m/s (b) 14 m/s

(c) 14 m/s (d) 0 (e) Those moving south 23. Water vapor; 1.25 times 25. Put

v1 = V + u/2, v2 = V − u/2 in 16.15. 27. (a) + (b) −x 29. It would proceed more

slowly, because fatter molecules don’t go as far between collisions, and therefore transfer Q

over smaller distances. 31. (a) D = 4.8 × 10−6 m2/s (b) K = 4.2 × 10−3 W/(m K) (c)

η = 5.8 × 10−6 kg/(m s2) 33. 43 watts/m2 35. (a) #/m3 (b) #/m6 (c) m2/s (d) 3Da

Chapter 17

1. (a) Out of the page (b) Radially inward, adds to (c) Increase, increase, oppose (d) Out of

the page; radially outward, detracts from; decrease, decrease, oppose 3. The charge is

overall neutral, but the negative charge is distributed farther out and the positive charge more

centrally. (So thinking classically, the negative charge has a larger orbit as the particle spins,

making the negative charge dominate the magnetic moment.) 5. (a) 45◦ (b) 35◦ (c) 30◦
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7. 1.88 × 10−28 kg 9. 6.16 × 10−27 J/T 11. Put µz = −(lx + 2sz)µB and x = µB B/kT

into equation 17.10. 13. Show this enx � e(n−1)x for x � 1. This should justify keeping

only the largest term in each sum in equation 17.10. 15. (a) kT = 2.5 × 10−2 eV,

µB B = 5.8 × 10−5 eV; thermal energy dominates. (b) 3.7 × 10−4 K

17. (a) 1.88 J K/(T2 · mole) (b) 3.75 × 10−3J/T, 0.375 J/T (c) 6.7 × 10−5 K 19. (a) 1.007

(b) 9.53 J/T 21. (a) 1.11 × 10−6 J K/(T2 mole) (b) 2.31 × 10−5 J K/(T2 mole) (c) 7.83 ×
10−8 J /(T mole) 23. (a) 5.58 J/T (b) 22.3 J/T (c) 11.2 J/T

25. (a) 9.38 J K/(T2 mole) (b) 1.07 J/T (c) 91.7 J/T

Chapter 18

1. (a) 1 + 1.6 × 10−17 (b) 1.68 3. Use P∝ � = eS/k , where the entropy of the small

system in a given state is 1 and that of the reservoir is S0 − �S, �S being its loss in entropy

owing to its supplying energy εs to the small system. 5. With Z = �se−βεs , show that the

indicated operation gives �s Ps E2
s with Ps = (1/Z )e−βEs. 7. Via the operation

−kT 2∂/∂T . 9. (a) Use ∂/∂β = −kT 2∂/∂T . (c) Z = 1 + e−ε1/kT + e−ε2/kT + · · · → 1 +
e−∞ + e−∞ + · · · = 1 (d) The indicated operation should give (kT/Z )[0 −
(ε1/kT 2)e−ε1/kT − (ε2/kT 2)e−ε2/kT − · · ·], and so you need to show that terms of the form

e−ax x2 → 0 as x → ∞. 11. (a) (V/V0)N (b)p = NkT/V (c)µ = −kT ln(V/V0)

13. (a) Z = C(β/β0)−3N/2(V/V0)N , where C = �se−Cs (b) (3N/2)kT (c)

NkT/V (d)−kT [(3/2) ln(β0/β) + ln(V/V0)] (e)
√

3N/2kT (f) (3/2)Nk 15. (a)2

(b)4 (c) 8 17. (a) 24 (b)418 19. (a) 9, 6, no (b)10 000, 5050, no (c) Case (b)

21. (a) [e(1 + e−580/T )/N ]N (b) −NkT ln[e(1 + e−580/T )/N ] (c) µ = −kT { ln[e(1 +
e−580/T )/N ] − 1} 23. (a) 3480 K (b) 2.3 × 109 K 25. (a) 137 N/m (b) Multiply both

sides by 1 − a. (c) Z = (1 − e−β hω)−3 (d) 3 hω/(eβ hω − 1) 27. (a) 2.08 × 10−46 kg m2

(b) 3.35 × 10−4 eV (c) 3.9 K 29. (a) 0.196 eV (b) 2280 K 31. Use e−x ≈ 1 − x for

x � 1. 33. Carry out the steps linking equations 18.18 and 18.19. 35. (c) 153 J/(mole K)

Chapter 19

1. (a) 0.597 (b) 0.403 (c) 0.981 (d) 0.019 3. No 5. (a) 25.9 (b) 2.72 (c) 1.001

(d) 1.000. 7. (a) 1, 0 (b) 0, 1, 2 (c) Boson gas (d) Fermions, fermions

9. (ex + 2)/(e2x + ex + 1), where x = β(ε − µ). 11. −0.173 eV 15. (a) 0.693 (b) 1.5

17. (a) 8 (b) 4/3 (c) 1/4 (d) 4 (e) 1/2 19. (a) s = 12, d = 4 (b) s = 6, d = 2

(c) s = 6, d = 4 (d) s = 6, d = 0 21. (a) 1/3 (b) 1/2 (c) 0 23. (a) 1/4 (b) 1/4

(c) 1/2 (d) 0 25. (a) Yes (b) 0.8 K 27. Yes (r p/h = 9) 29. (a) 4.64 × 1012/s (b) 35 K

(c) Large 31. (a) (8πV/h3)p2dp (b) g(ε) = [4πV (2m)3/2/h3](ε − ε0)1/2 (c) dN/dε =
[4πV (2m)3/2/h3](ε − ε0)1/2/(eβ(ε−µ) + 1) 33. (a) 4.05 (b) 0.130 eV (c) 17.0, 0.93 eV

35. Write N = ∫dN = ∫g(ε)n(ε)dε and integrate. Solve for µ. 37. (a) 28 eV, 2.2 × 105 K

(b) 23 eV, 1.8 × 105 K 39. (a) 2.4 × 1010 K (b) 3.9 × 1014 kg/m3

Chapter 20

1. g(ε) = (4πV/h3c3)
√

ε2 − m2c4 ε 3. About 1 (V ≈ 0−29 m3, p3 = 10−72 (kg m/s)3,

h3 = 10−100 (J s)3) 5. (a) 6.49 × 1034 particles/eV (b) 0.96 × 1022 particles/eV

7. (a) kT (b) 2kT 9. Use equation 19.14 and ex ≈ 1 + x for x � 1.
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11. (a) fx = Nvx/2V (b) 2mvx (c) pressure = (N/V )mv2
x (d) pressure = (N/V )mv2/3 =

(2/3)(N/V )εave (e) fx = Nc cos θ/2V , �px = 2p cos θ , pressure = (N/V )pc cos2 θ , then

average over cos2 θ and p. 17. −0.39 eV 19. (a) 6.8 eV, 4.1 eV, 53 000 K (b) 5.6 eV, 3.4

eV, 44 000 K (c) −7.6 × 10−5eV, −9.2 × 10−5 eV 21. (a) 7.9 eV (b) 4.7 eV

(c) 61 000 K

Chapter 21

1. (a) Use ex ≈ 1 + x for x � 1. (b) Use L’Hospital’s rule on Cx3/(ex − 1), where

x = βε. 3. Write the distribution as Cx3/(ex − 1), where x = βε. Set the derivative equal

to zero to get x = 3(1 − e−x ). Show that it is satisfied by x = 2.82. 5. No. Using the chain

rule dε = (−hc/λ2)dλ, so the distribution in λ has an extra factor of −hc/λ2 compared with

the distribution in ε. This extra factor shifts the position of the maximum.

7. (4π/h3c3)ε3/(eβε + 1) 9. The energy absorbed is at green wavelengths and nothing else.

The energy emitted is a blackbody spectrum at temperature T. 11. 4.0 × 1066 J, 1.5 ×
1020 K 13. (a) 16 (b) 2 (c)16 15. Ir/I0 has a peak in the red. Ia/I0 = Ie/I0 = 1 − Ir/I0

has a dip in the red. 17. Wait two minutes before adding the water, because you want to

radiate away as much heat as possible, and the coffee radiates heat faster when hotter.

19. (a) About 300 K and 2 m2 (b) 920 W (c) 1.9 × 104 kcal (d) 47 (e) A slightly cooler

skin temperature greatly reduces the rate of heat loss through radiation. 21. (a) Net power

radiated = 4Aσ T 3�T (b) d(�T )/dt = −C1�T, with C1 = 4Aσ T 3/C (c) Write this

equation as d(�T )/�T = −C1dt and integrate, obtaining �T = C2e−C1 t , where C2 is the

temperature difference at the beginning. 23. The absorptivity would wiggle between 0 and 1

(like the ratio of the Sun’s curve to that of the 5800 K blackbody) for wavelengths shorter than

green, but would be about equal to 1 for green and longer wavelengths; reflectivity = 1−
absorptivity. 25. Double glazing reduces the rate of heat loss 27. 214 K, 253 K, 279

K 29. Volume in coordinate space is gained without a corresponding loss in momentum

space (as would happen in an adiabatic process because of the reduction in momentum

resulting from collisions with receding walls). Free expansion is a nonequilibrium process,

and so entropy increases. 31. �W = −�E = Ei − Ef = a(ViT 4
i − VfT 4

f ), where V T 3 is

constant (constant entropy). 33. The mean square voltage noise would be half as large.

Chapter 22

1. 81 N/m 3. (a) 6R 5. (b) 8.6 × 10−3 eV, 1.3 × 1013/s (c) x/(ex − 1) (d) It starts at

unity and slopes downward (with positive curvature), approaching zero as x → ∞ (the

high-temperature limit). 7. D(T ) = (3/x3)
∫

0
x t3dt/(et − 1) 9. (a) cs = ω/k (b) ε = pcs

11. 0.013 eV 13. 0.025eV, 3.8 × 1013/s 17. 6 × 10−4 K 19. (a) 90 MeV (b) 1012 K

21. (a) ε = (h2/2m)(Ne/2V )2/3 (b) It differs by a factor (3/4π )2/3 ≈ 0.38. (c) ε = p2/2m

where p = h/λ, so that λ = (8πV/3Ne)1/3 = 2.03(V/Ne)1/3 = 2.03 × spacing

23. (a) 0.4 K (b) 0.04 K 25. (a) 1.02 × 1044/m3, 6.40 × 1043/m3 (b) 5.0 × 1011 K,

3.7 × 1011 K 27. 0.07 K, no 29. 0.0027 31. (a) 5.90 × 1028/m3 (b) µ ≈ ε f = 5.5 eV

33. It is larger by 4.2 × 10−3% 35. A slope of 0.05 × 10−3J/K4 gives εD = 0.029 eV, and

an intercept of 0.68 × 10−3J/K2 gives ε f = 5.2 eV. 37. (a) 3.49 × 10−3 J/K (b) 1.29 ×
10−3 J/K 39. The heat capacity begins at zero and increases linearly (electrons). Then after a

few degrees it increases as T 3 (lattice) and approaches the value 3 (lattice saturated),
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whereupon it nearly levels off, increasing linearly and slowly (electrons) until it reaches the

value 4.5 (electrons saturated), whereupon it levels off for good.

Chapter 23

1. (a) Outer orbits overlap with the electron orbits of neighboring atoms, whereas inner orbits

may not. (b) Outer orbits have greater overlap and therefore greater splitting. 3. The same

as Figure 23.2a, but the band is full rather than half full, and µ moves up to a position between

the two bands. 5. (a) µPt = 6 × 10−4 m2/(V s), µCu = 4 × 10−3 m2/(V s) (b) Most

conduction electrons in conductors are stuck well below the Fermi level and cannot respond at

all to imposed electric fields. The average mobility is heavily weighted by these non-mobile

electrons. 7. 2.1 × 1029/m3 and 1.8 × 1029/m3. They are 2.1 × 103 and 1.8 × 103 times

larger, respectively. 9. (a) Set ne = nh and solve for µ.The required conditions are

εv < µ < εc, and |ε − µ| � kT . (b) 0.013 eV 11. (a) ne = nh = 4.9 × 1016/m3

(b) ne = nh = 1.0 × 108/m3 (c) ne = nh = 1.1 × 1021/m3 13. (a) 1.0 × 1016/m3 (b) 1.0 ×
1015/m3 15. (a) 6.7 × 1015, 5.9 × 1019, 2.5 × 1013, 7.7 × 1023/m3 (b) 2.0 × 10−4,

5.5, 3.5 × 10−6, 1.0 × 106A/(V m) 17. 1.05 eV 19. 9 K 21. 6.4 eV 23. (a) 0.256 eV

(b) 1.25 × 1021/m3 (c) 1.7 × 1011/m3 (d) 0.460 eV, 1.25 × 1021/m3, 1.9 × 1019/m3

(e) 590 K 25. (a) 0.256 eV (b) 1.25 × 1021/m3 (c) 1.8 × 1016/m3 (d) 0.4 eV (in actual

fact it is 0.394 eV, because the material is not quite purely intrinsic. We must have (no. of

holes in valence band)+(no. of donor electrons)=(no. of electrons in conduction band). Then

we would use the law of mass action for the product nhne. 5.7 × 1021/m3, 4.4 × 1021/m3 (e)

440 K 27. (a) 0.405 eV (b) 0.202 eV (c) 162 K

29. 20 K (Only 10−5 of the donors are ionized, so the Fermi level lies almost on the donor

levels.) 31. (a) 0.7 eV (b) 8.0 × 1021/m3, 5.5 × 109/m3 (c) 5.5 × 109/m3, 8.0 × 1021/m3

(d) 2.0 × 1022/m3, 1.9 × 1011/m3 33. (a) 1.3 × 1011/m3 (b) 1.3 × 1011 /m3 (c) 1.1 ×
105 m/s (d) 1.15 × 10−3 A/m2

Chapter 24

1. (a) P1/P0 = e−β(ε1−ε0) = e−50 = 10−21.7 (b) 1160 K, 1.16 K 3. 2.4 × 10−3

5. (M, S) = (±6µ, 0); (±4µ, k ln 6); (±2µ, k ln 15); (0, k ln 20) 7. 5.4 cm/s 9. The

volume and temperature both decrease. The spin entropy increases. The entropy in the kinetic

and other degrees of freedom decreases. 11. (a) 4.6 × 10−3 (b) 3.5 × 107 13. (a) 1.2 ×
10−7 (b) 8.6 × 106 times more 15. 8 × 10−4 K 17. (a) 0.555 × 1022 (b) 0.550 × 1022

(c) 1.46 × 10−4 J/K (d) 0.012 K 19. 5.3 × 10−5 K 21. 0.9999999999 23. (a) 11.0 ×
10−10m (b) Spacing = 3.5 × 10−10m; vibrations are three times larger. 25. The normal

fluid component slows down and stops, but the superfluid component keeps on going without

friction (i.e., it flows through the normal component). 27. 0.65 33. 2050 km, 5.8 km

35. (a) x = 0.885(M/Ms)1/3 and x = 0.356(M/Ms)1/3 (b) 600 km, 4.1 km (c) 1.2Ms,

4.7Ms
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absolute zero

approaching, 506–510

behaviors near, 175–176

acceptors, 483, 488

activation energy, 297

adiabatic demagnetization, 508–509

adiabatic processes, 229–232

in ideal gas, 231–232

in photon gas, 449

temperature changes, 229

air, liquefaction of, 312–314

alloys, 314–315

angular momentum, 9, 11–14, 531

atomic magnets, 371–372

atomic vibrations, 457

average molecular speed, 355

band-edge equivalent states, 485–486

band structure and width, 477–479

bands

density of states, 486

in divalent metals, 480

overlapping, 479

unfilled, 479–481

valence and conduction, 192, 477–479

Bardeen–Cooper–Schrieffer (BCS)

theory distribution, 518

bell curve, see Gaussian

beta (1/kT), 332

bias, forward and reverse, 497

Big Bang, radiation from, 441, 443

binary mixtures, 308–316

binomial expansion, 29, 42

black holes, 520

blackbody emissivity, 442

blackbody radiation, 438–449

distribution, 439

energy density, 439–440

energy flux, 441–444

Bohr magneton, 371

boiler, 273

Boltzmann statistics, 333

Boltzmann’s constant, 72, 126, 138

Bose--Einstein condensation, 512–513

for fermion pairs, 517–518

Bose--Einstein statistics, 403, 423

bosons, 13

degenerate, 176, 394, 413, 429, 510,

512–519

occupation number, 403, 423–425

relativistic and nonrelativistic, 403,

423–425

bound states, 15–17

Brownian motion, 342

canonical ensemble, 330

Carnot, Sadi, 265

Carnot

cycle, 265

efficiency, 266, 267

engine, 265–267

catalysts, 297

chain rule, 215

charge carriers, 483

mobility, 484

thermal excitation, 482

chemical equilibrium, 295–297

chemical potential, 81, 83–84, 137,

288–291

and concentration, 288, 290

and heat released, 83–84

and number of particles

and osmosis, 293–294

and particle distributions, 84–86

and phase space, 84

and potential energy, 288, 290

and the second law, 288

at all temperatures, 431–433

calculation of, 391–392, 411–414

classical limit, 431

dependence on T, p, 168, 288

from partition function, 388, 394,

406–407, 413

in low- and high-density limits, 394,

412–414

of degenerate systems, 401, 413–414,

429, 430

bosons, 429, 513

fermions, 429, 430

of nearly degenerate fermions,

432–433

chemical reactions, heat transfer, 144

classical limit, 431

classical probabilities, 333–334, 336–337

classical statistics, 329–342

examples, 336–337

limits of, 386, 409

needed ingredients, 402, 413

when to use, 333

Clausius--Clapeyron equation, 299–300

coefficient of performance, 258

coefficient of utility, 267

cold packs, 309

collapsed star, size of

collision frequency, 357–359

compressibility, 196

compression ratio, 275

Compton scattering, 6

condenser, 273

conduction band, 192, 193,

478

conduction electrons, 466–468

heat capacity, 468

thermal energy, 466–468

thermal properties, 457

conduction

electrical, 54–55

thermal, 79

conductors, 479–481

conserved quantities, 242, 362

551
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constraints

first law, 167–168

natural, 155–178

second law, 158–165

second order, 160–162, 164

third law, 166, 175–177

types of, 157

zeroth law, 166

contents, v–vi

continuity equation, 242, 362

convection, 81

vertical, 229

cooling

by adiabatic demagnetization,

508–509

by throttling, 235–237

by helium diffusion, 507

diffusive, 506–507, 510, 512–519

mechanical, 506–507

optical methods for, 510

through expansion, 506–507

cosmic background radiation, 441, 443,

449

critical point, 298, 302

Curie law, 375

current density, 355

currents, drift and diffusion, 494–496

cycles

gas and vapor, 260

open and closed, 260

Debye

cutoff, 460–461

energy, 461

frequency, 461

function, 462

model, 459–465

temperature, 461

degenerate levels, 104

degenerate systems, 175–177, 504

bosons, 510, 512–519

conditions for, 504

fermions, relativistic and

nonrelativistic, 430

gases, 428

degrees of freedom, 71–72, 74

and partition function, 389–390,

410–411

energy of, 342

in solids, 457

density of states, 10–11, 105–110,

390–391

and internal energy, 105, 390–391

and number of particles, 390–391

for gases, 402–405, 422–432

Fermi gas, 486

phonon gas, 459

detailed balance of radiation, 440–441

diamagnetism, 369

diatomic gas molecules, 71

diesel engines, 271

differentials, exact and inexact, 88–91

diffusion, 83–87

across p--n junction, 494–496

diffusion equation, 362

diffusive cooling, 507–508, 510,

512–519

diffusive equilibrium, 85–86

diffusive interactions, 83–87, 287–316

and Gibbs free energy, 170–171

distinguishable subsystems, 386, 409

donors, 483, 488

doped semiconductors, 482, 488–489

Doppler effect in cooling, 510

drift and diffusion currents, 494–496

Dulong--Petit law, 339

effective mass of charge carriers, 486

efficiency of engines, 254, 266, 267

and reservoir temperatures, 266

Einstein model

boson systems, 513–519

for lattice vibrations, 459

elastic constant, 16

electrical charge, 5–6

electrical circuits, thermal noise in, 450

electrical conductivity, 484, 485,

486–487

in semiconductors, 485, 486–487

temperature dependence of, 481

electrical current density, 483

electrical properties of materials, 497

electromagnetic waves, 6, 80

electronic devices, 494–497

electrons

and holes, 192–194

conduction, 192

valence, 192

emissivity, 442

energy distribution, 534

for large systems, 120–124

energy

fluctuations, 123

harmonic oscillator, 16

internal, 74

potential, 65–69

radiation, 440–444

thermal, 72–73, 74

transfer, 79

engines, 252–275

Carnot, 265–267

coefficient of utility, 267

constraints, 254, 262

cycles, 262

efficiency, 254, 266

gas piston, 255–256

gas turbine, 257–259

increasing efficiency of, 274–275

internal combustion, 272

model cycles, 254, 262

performance analysis of, 262–265

p–V diagrams, 254

reversible, 266, 267

T--S diagrams, 254

types of cycle, 260

ensemble average, 330

ensembles, 26, 329–330

enthalpy

calculation of, 264

definition, 168

dependence on (T, p), 264

inthrottling process, 236

in performance analysis, 262–265

of ideal gas, 264

properties of, 170

entropy, 126–130

and heat transfer, 136

and mixing, 308, 309–315

and number of states, 126, 127

and reversibility, 233

and the second law, 128

and the third law, 142–145

and thermal interactions, 135–145

at T = 0, 142

definition of, 126

dependence on (p, V), 219

dependence on (T, p), 219

in binary systems, 308–310, 315

of gases and solids, 129

of ideal gas, 187
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of interaction, 308, 309–310, 315

of many systems, 128

of mixing, 308–315

of photon gas, 449

of solids, 187

equations of state, 187

for ideal gases and solids, 187–189

for liquids, 191

for real gases, 189–191

equilibrium, 102–103, 158

diffusive, 85–86

the approach to, 158, 159–160

thermal, 137

equilibrium concentrations, 290–291

equilibrium constant, 296

equipartition, 71, 138–139, 341–342

and van der Waals model, 218

heat capacities, 197–198

testing, 217–218

evaporation, 85

excitation temperature, 337

expansion

and internal energy, 82

free, 237–238

extrinsic variable, 136

factorials, 30–31

Fermi--Dirac statistics, 403, 423

Fermi energy, 177

degenerate fermions, 402, 413

Fermi gas model, 486–487

Fermi level, 176, 458, 489–490

in semiconductors, 485

temperature dependence of, 489–490

Fermi surface, 176, 430

Fermi tail, 480–481

fermion gas, nearly degenerate, 467,

535–536

fermion pairs, 517–518

fermions, 13

degenerate, 176, 401–415

degenerate relativistic and

nonrelativistic, 430

nearly degenerate, 432–433

occupation number, 403, 423

relativistic and nonrelativistic, 403,

423–425

ferromagnetism, 370

first law, 88, 135, 137

constraints, 167–168

definition, 88

fluctuations, 40–44, 123

in occupation number, 404–405,

426–428

at equilibrium, 162–164

in ideal gases, 164

relative, 43, 53

forward bias, 497

Fourier analysis, 7

amplitudes, 7

free expansion, 237–238

freezing and boiling points, 293

friction, 234

fundamental postulate, 103–104

gas cycle, 260

gas laws, in quantum gases, 404–405,

426–428

gas piston engines, 255–256

gas turbine engines, 271–272

gases

degenerate, 428

density of states, 402–405, 422–432

diatomic, 71

ideal, 187, 188

liquefaction, 312–314

molar heat capacities, 196

molecular velocities, 352–354

partition function, 389–393, 409

phonon, 192

pressure in, 357

properties of, 198–200

quantum, 402, 404–405, 422,

426–428

real as opposed to ideal, 189–191

relativistic, 111

relativistic and nonrelativistic, 403,

423

root mean square speed, 342, 355

states for, 108, 110

gasoline engines, 269

gauges, 165

Gaussian distribution, 44–50

Gibbs free energy

and chemical equilibrium, 295

and phase transitions, 306

definition, 168

in binary systems, 309–315

properties of, 170–171

van der Waals, 303

grand canonical ensemble, 330

gravitational energy in collapsed star, 521

greenhouse effect, 446–448

gyromagnetic ratio, 14

harmonic oscillator, 15–17

heat, 79

heat capacity, 337–339

at low temperature, 144

changes with V and p, 219–220

Debye model, 463

definition, 141

diatomic gases, 338

of photon gas, 449

of solids, 338–339, 468–470

heat equation, 241–243, 362

solution for, 243

heat flux, 239

heat function, 170

heat pumps, 259–260

heat shields, 445–449

heat transfer, 79–81

and accessible states, 140

and entropy, 136

and diffusive interactions, 83–84

direction of flow, 158, 162

in chemical reactions, 144

heat, inexact differential, 90

helium

expansive heating, 237

liquid, 506

phase diagrams, 515

superfluid, 515–516

helium diffusion, 507–508

refrigeration by, 507

helium I and II, 515, 516

phase transition, 516

helium III, 506, 507, 517

Helmholtz free energy, 384–385

and partition function, 384–385

definition, 168

properties of, 169–170

van der Waals, 302–303

holes, 193, 372, 483

hydrogen, expansive heating, 237

hysteresis, 305

ice, melting point, 300

ideal gases

adiabatic processes, 231–232
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ideal gases (cont.)

entropy, 187

equations of state, 188

identical particles, 105–107

and counting of states, 239

and entropy, 239

and occupation number, 387–388, 407

identical subsystems, 387–388, 407

insulation by layered foils, 445–446

insulators, 482

integrals, standard, 534

interacting systems, 117–124

energy distribution, 534

interaction entropy, 308, 309–310, 315

interactions, 79–92

types of, 79

internal combustion engines, 272

internal energy, 74

and accessible states, 101–111

and chemical potential, 405–407,

428–433

dependence on (T, p), 218

fluctuations in, 384

from partition function, 394, 412–414

in gases, 69, 73

in liquids, 67, 69

in solids, 68, 73

integrated, 167

mean value, 384

quantum effects, 69–71

three ways to change, 88

intrinsic materials, 482

intrinsic variables, 136

interdependence, 168

isobaric processes, 226–228

isothermal compressibility, 196, 197

isothermal processes, 228–229

jet engines, 271–272

Joule--Thompson process, 235–237

kinetic theory, 352–364

lapse rate, 229

large numbers, tools for, 121

latent heat, 299

lattice energy, 462

low-temperature fluctuations, 463

lattice vibrations, 459–464

Debye model, 459–464

Einstein model, 459

law of mass action

chemical, 295–297

in semiconductors, 487

layered foils, 445–446

Lenz’s law, 369

liquid helium, 506, 515–516

phase diagrams, 515

production of, 506, 507

liquids, 191

heat capacities, 197–198

potential energy in, 67

states for, 110

low temperatures, 505–519

attaining, 506–510

measuring, 510–511

magnetic interaction energy, 15

magnetic moment, mean, 373

magnetic moments, 14–15, 371–372, 531

magnetic properties of materials, 369

magnetism, 369

low-temperature limit, 375

magneton, Bohr and nuclear, 371

mass, effective, 486

mass action, law of, 295–297, 487

materials

electrical properties of, 497

magnetic properties of, 369

Maxwell, James Clerk, 6

Maxwell’s relations, 172–175

Maxwell velocity distribution, 352–354

derivation, 172

meaning, 173–174

mean field models, 301–303

mean free path, 358

mean values, 26–27, 31, 43, 354–355,

383–385, 403, 423

mechanical cooling, 506–507

mechanical interaction, 81–82

metals

divalent bands, 480

s- and d-bands, 481

microcanonical ensemble, 330

minerals and alloys, 314–315

miscible fluids, phase transitions,

312–314

mixing, 238–239

mixing entropy, 308–315

mixtures, 308–316

mobility, 484

models, 200

molar heat capacity, 141, 196

molecular diffusion, 359, 361

momentum and wavelength, 6

motion, Brownian, 342

multiple occupancy, 388, 406–407

natural constraints, causes of, 158

nearly degenerate fermions, 432–433

neutron stars, 520

Niagara Falls, 289

nonequilibrium processes, 234–244

nuclear magneton, 371

Nyquist theorem, 450

occupation number, 402–405, 422–432

and fluctuations, 404–405, 426–428

for bosons, 403, 423–425

for fermions, 403, 423

order parameter, 305

osmosis, 293–294

osmotic pressure, 294

Otto cycle, 269

paramagnetism, 369, 373–375

parameters and constraints, 157

partial derivatives, 211–212, 213–216

ratios, 216

particle distributions, 84–86, 390–391

and second law, 288

particle flux, 355–357

particle transfer, 83–87

and changes in temperature, 86

particle waves, 6

particles

direction of flow, 158, 162

distinguishable or identical, 105–107

partition function, 382–394

definition, 383

distinguishable subsystems, 386, 409

examples of, 394, 412–414

for a gas, 389–393, 409

for many subsystems, 386–388

for rotation, 390–391

for vibrations, 391–392, 411–414

identical subsystems, 387–388, 407

translational motion, 390, 411

phase diagrams, 298–299

vapor cycle, 272
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phase equilibrium, 298–307

phase space, 9–10

and chemical potential, 84

and particle densities, 389–393, 409

phase transitions, 73

first order, 304, 306

higher order, 304, 306

in minerals and alloys, 314–315

in miscible fluids, 312–314

Landau theory, 306

phonon gas, 459–465

density of states, 459

phonons, 191–192, 459–465, 518

distribution, 460

maximum energy, 460–461

photoelectric effect, 6

photon gas

adiabatic processes, 449

energy distribution, 439

entropy of, 449

heat capacity, 449

inside Sun, 443

photons, 438–440

chemical potential, 439

in oven, 438–440

occupation number, 439

Planck’s constant, 6

p--n junctions, 494–497

diffusion across, 494

potential energy shift, 494

postulate, fundamental, 103–104

potential energy

and forces, 65–69

and phase transitions, 67, 68

potential energy reference level, 67, 72

potential wells, 67, 68

in liquids, 67

pressure, 137

principle of detailed balance of radiation,

440–441

probabilities

air molecules in a room, 27, 31, 33,

36, 44, 49–50

and accessible states, 103

and configurations, 27

and entropy, 401, 413–414

classical statistics, 333–334

closely spaced states, 340

coins, 27, 29, 33

criteria, 27, 31

dice, 27, 28

in small systems, 27–32

in statistics, review, 401, 413–414

quantum statistics, 334

probability distributions, gases, 352–354

probability of being in a state, 330–332

processes, quasistatic, 103

p–V and T–S diagrams, 254

p–V diagram

for engines, 254

van der Waals model, 301

quantum confinement, 458

quantum effects, 5–17, 69–71

quantum gases, 402, 422

chemical potential, 405–407, 428–433

energy and particle distribution, 403,

423–425

gas laws, 404–405, 426–428

internal energy, 404–405, 426–428

mean values, 403, 423

quantum probabilities, 334, 335

quantum states, 9–10

quantum statistics, 401–415

examples, 335

needed ingredients, 402, 422

when to use, 333

quarks, charge of, 6

quasistatic processes, 103

R-value, 240

radiation, 80

emission, absorption, reflection, 445

random walk, 50–55

Rankine cycle, 273–274

reaction rate, 297

reactions, chemical, 290

real gases, 189–191

refrigerators, 258

coefficient of performance, 258

reheat cycle, 275

relativistic gases, states for, 111

relaxation time, 102, 235

reservoir, 331

hot and cold, 253

reverse bias, 497

reversibility, 232–234

and heat transfer, 233

root mean square, 44

rotation

molecular, 69–70

partition function for, 390–391

second law, 85, 125–126, 288

statements of, 125, 128

semiconductor devices, 494–497

semiconductors, 193, 482–494

doped, 482, 488–489

Fermi level in, 489–490

intrinsic, 482, 483–487

law of mass action, 487

n- and p-type, 488

transition to intrinsic, 491–492

small numbers, tools for, 121

small systems, 25–35, 40–55

solar energy flux, 443

solar spectrum, 441, 443

solids

atomic vibrations in, 191–192

equations of state for, 189

heat capacities of, 196, 457, 468–470

modeling of, 191–194

states for, 108, 109, 110

thermal properties of, 457–470

solubility gap, 312

solutions

and chemical potential, 291–292

and vapor pressure, 292–293

colligative properties, 291–294

freezing and boiling points, 293

special processes, 226–244

specific heat, 141

spectra of accessible states, 389–390,

410–411

spin, 12, 13

down or up, 13

spin entropy, 508

spin quantum number, 13

spin--orbit coupling, 375

staged compressors and turbines, 275

standard deviation, 42–44, 46, 47, 48, 49

standard integrals, 534

standing waves, 15

stars, death of, 519

states

accessible, 532–533

and energy distribution, 117–124

and heat transfer, 140

closely spaced, 340

correction for identical particles, 106
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states (cont.)

description of, 16, 17

for a system, 101, 105–110

for interacting systems, 117–124

for liquids, 110

for macroscopic systems, 120–124

for monatomic gas, 109

for polyatomic gas, 109

for solids, 108, 109, 110

per particle, 107–109

probability of being in, 330–332

spacing of, 104–105

spectrum of, 402, 422

statistical independence, 32–34

statistical mechanics, 4, 5

statistics, quantum and classical,

405–407, 428–433

Stefan--Boltzmann constant, 442

stellar collapse, 519

steps, random walk, 50–55

Stirling’s formula, 30, 32, 46, 47, 107

stoichiometric coefficients, 295–296

storms, 230

stress, 361

sum over states, 390, 411

Sun, 520

superconductivity, 517

supercooling, 303

superfluid, 516

superheating, 303

system, states for, 532–533

Taylor series, 45, 65, 531–532

temperature, 72, 73, 135–139

and mixing, 309

and occupation number, 403, 423

and particle transfer, 86

definition, 135

low, 505–519

scales, 166

transition to intrinsic, 491

thermal conduction, 239–241

thermal conductivity in gases, 359, 361,

430

thermal energy, 72–73, 74

thermal equilibrium, 137

thermal interaction, 79–81

thermal inversion, 229–232

thermal motion and diffusion, 85, 86

thermal noise, 450

thermal properties of solids, 457–470

thermal resistance, 240

series and parallel, 240

thermodynamical potentials, 168

thermodynamics, 4, 5

thermometers and gauges, 165

third law, 142

and Helmholtz free energy, 385

constraints due to, 166, 175–177

statement of, 142

throttling process, 235–237,

506

thunderheads, 230

translational motion, partition function,

390, 411

transport processes, 359–362

triple point, 165

turbines, 257–259, 273

uncertainty principle, 7–9, 16, 17

vacancies, 483

valence band, 192, 193, 478

van der Waals’ model, 190, 198–200,

301–303

and equipartition, 218

vapor cycle, 260, 272–274

phase diagram, 272

vapor pressure, 292–293

variables

changing, 211–217

choice of, 210–221

dependent and independent, 91, 156,

186, 210

intrinsic and extrinsic, 136

velocity distributions in gases,

352–354

vibration

molecular, 69–70

partition function for, 391–392,

411–414

viscosity, 359, 361

volume expansion, 196, 197

water

freezing, 198

special properties of, 298

triple point of, 165

wave functions, 6

wave nature of particles, 6

wave number, 7

wavelength and momentum, 6

waves

particle, 6

superposition, 7

white dwarfs, 177, 520

work, 81–82

and internal energy, 81, 82

direction of, 158, 162

inexact differential, 90

types of, 81, 83–84

work function, 170

Z, partition function, 383

zero-point energy, 16

zeroth law constraints, 166

zitterbewebung, 17
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